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Abstract: Forest fires pose significant hazards to ecological environments and economic society. The 

detection of forest fire smoke can provide crucial information for the suppression of early fires. Pre-

vious detection models based on deep learning have been limited in detecting small smoke and 

smoke with smoke-like interference. In this paper, we propose a lightweight model for forest fire 

smoke detection that is suitable for UAVs. Firstly, a smoke dataset is created from a combination of 

forest smoke photos obtained through web crawling and enhanced photos generated by using the 

method of synthesizing smoke. Secondly, the GSELAN and GSSPPFCSPC modules are built based 

on Ghost Shuffle Convolution (GSConv), which efficiently reduces the number of parameters in the 

model and accelerates its convergence speed. Next, to address the problem of indistinguishable fea-

ture boundaries between clouds and smoke, we integrate coordinate attention (CA) into the YOLO 

feature extraction network to strengthen the extraction of smoke features and attenuate the back-

ground information. Additionally, we use Content-Aware Reassembly of FEatures (CARAFE) up-

sampling to expand the receptive field in the feature fusion network and fully exploit the semantic 

information. Finally, we adopt SCYLLA-Intersection over Union (SIoU) loss as a replacement for 

the original loss function in the prediction phase. This substitution leads to improved convergence 

efficiency and faster convergence. The experimental results demonstrate that the LMDFS model 

proposed for smoke detection achieves an accuracy of 80.2% with a 5.9% improvement compared 

to the baseline and a high number of Frames Per Second (FPS) - 63.4. The model also reduces the 

parameter count by 14% and Giga FLoating-point Operations Per second (GFLOPs) by 6%. These 

results suggest that the proposed model can achieve a high accuracy while requiring fewer compu-

tational resources, making it a promising approach for practical deployment in applications for de-

tecting smoke. 

Keywords: deep learning; forest fire smoke detection; Ghost Shuffle Convolution; coordinate atten-

tion; CARAFE; SIoU; Yolov7 

 

1. Introduction 

Forests, as one of the most valuable resources in nature, play a crucial role in ecolog-

ical functions, such as preventing wind erosion and conserving water and soil. On the 

other hand, forests also have enormous economic value for humans. Forest fires often lead 

to severe consequences such as soil erosion, air pollution, and threats to animal survival, 

causing significant ecological and economic damage [1]. Therefore, the early detection 

and control of forest fires are crucial. Smoke, as an important precursor to forest fires, can 

be effectively monitored for their detection and control, which is significant for their sup-

pression [2]. 
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The detection of forest smoke has gone through various developmental stages, in-

cluding manual inspections, instrument-based detection, and detection based on com-

puter vision. Manual inspections require a high level of manpower and material resources 

and have a low efficiency. Moreover, detection results often fail to meet expectations. In-

strument-based detection mainly depends on various detectors and sensors from the past 

two decades. However, instruments are prone to interference from small particles, such 

as dust in the environment [3]. Additionally, they only trigger an alarm when the concen-

tration of smoke reaches a threshold. Due to the complexity of outdoor air flow and other 

environmental factors, a fire may become difficult to control by the time the alarm goes 

off. Therefore, this method has gradually been abandoned. In the phase of detection based 

on computer vision, pattern recognition is used for feature extraction and classification to 

achieve the identification of forest smoke [4]. Gubbi et al. [5] used wavelets to extract the 

features of smoke and then classified smoke using a support vector machine (SVM). H. 

Cruz et al. [6] proposed a new color detection index for detecting the colors of flames and 

smoke. This method enhances the color by normalizing the RGB channel color and mainly 

combines the features of the motion and color of smoke to obtain the regions of flames 

and smoke through thresholding. Prema et al. [7] used a comprehensive approach to de-

tect smoke, which included the YUV color space and wavelet energy, taking the relation-

ship and contrast of smoke into account. However, due to the limitations of human expe-

rience, it is subject to various forest environments. In summary, although some progress 

has been made compared to instrument-based detection, traditional image detection 

methods have difficulty extracting the intrinsic features of smoke. The time required for 

detection is also too long, and the rate of false alarms is high, with poor generalization 

ability. 

In recent years, with the rapid development of artificial intelligence, drones with 

deep learning have injected strong development momentum into detection via computer 

vision [8]. Due to their high accuracy, real-time performance, strong robustness, and low 

cost, deep-learning-based detection algorithms of smoke are widely applicable in various 

complex scenarios and hold great research value. Convolutional neural networks (CNNs) 

can achieve the high-precision recognition of the data of a two-dimensional image, and 

researchers have attempted to apply CNNs in the detection of smoke. Salman Khan et al. 

[9] comprehensively studied various detection algorithms and proved that the CNN has 

a high accuracy in smoke detection tasks. Additionally, the detection of smoke is often 

prone to errors due to the complexity of the background. In outdoor environments, such 

as forests, interferences such as clouds in the sky, reflections in lakes, and changes in light-

ing can easily cause false alarms [10]. Therefore, many scholars have proposed algorithms 

for improvement. Xuehui Wu et al. [11] used algorithms of background subtraction and 

achieved good results in the detection of dynamic smoke. The rate of false detection for 

classifying clouds reflected from sunlight was reduced, but the rate of false detection for 

newly formed objects remained high. Yin et al. [12] adjusted the parameters according to 

changes in the actual environment and thus could accurately detect smoke in different 

conditions. Zhang, Q. et al. [13] constructed a simulated smoke dataset and trained it us-

ing the proposed deep convolutional generative adversarial network. They effectively 

monitored smoke areas and reduced false alarms, but their method was demanding in 

terms of hardware and difficult to widely deploy to meet real-time requirements. Light-

weight models are widely used in practical tasks by virtue of their lower energy consump-

tion and faster inference speeds. Guo, Y. et al. [14] used the constructed S-Mobilenet mod-

ule to realize the lightweight YOLO model for the problem of the real-time detection of 

ship targets of a smaller size and evaluated its effectiveness on hardware devices. How-

ever, there is still the problem of weak applicability in real tasks. Li, W. et al. [15] devel-

oped the lightweight WearNet based on a novel convolutional block, which can be de-

ployed with embedded devices for the detection of scratches. Although all of the above 

achieved good results, there are still problems in existing research on smoke detection. 

Sheng, D. et al. [16] used a CNN network and linear iterative clustering (SLIC) for smoke 
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image segmentation and applied density-based spatial clustering of applications with 

noise (DBSCAN), which can achieve faster detection. However, their proposed method 

has a low FPR rate, which indicates high model sensitivity and needs further improve-

ment. 

In summary, the deep-learning-based detection algorithms of smoke mentioned 

above have achieved considerable success, but there are three problems when it comes to 

actually using edge equipment for detection. Firstly, models of a large network have a 

huge number of parameters and high hardware requirements, making it difficult to de-

ploy them for practical tasks and meet real-time requirements for the detection of smoke. 

Secondly, existing lightweight models can detect smoke more quickly under the same 

conditions, but their accuracy of detection is often far lower than that of models with a 

large network. For detecting things with thin features, such as smoke, the fusion of the 

features is often incomplete, which leads to a lower accuracy of detection. Therefore, there 

is the problem of a performance imbalance between the accuracy and speed of detection. 

Thirdly, so-called small smoke is a type of smoke produced in the early stages of a forest 

fire and is characterized by a small volume and thinness. Thin and small smoke cannot 

effectively extract information due to the small number of features it can extract. It is more 

difficult to detect than typical smoke that has already taken shape and is susceptible to 

disturbances, such as lens impurities. This leads to the problem of UAVs obtaining noisy 

images during detection missions, which can cause missed detections [17] as well as false 

detections caused by interfering objects, such as cloud cover [18]. These make the detec-

tion of forest smoke a major challenge. 

In order to solve the problems above, a lightweight model for detecting forest fire 

smoke based on YOLOv7 [19] is proposed in this paper. (1) To address the problem of the 

original model being large in size and difficult to deploy in real edge devices, we use 

GSConv to replace the standard convolution in the neck layer and construct fast pyramid 

pooling modules by using GSELAN and GSSPPFCSPC, based on GSConv. This can speed 

up the model convergence and fuse the features of smoke at a faster rate with less com-

putation when dealing with images of smoke. (2) Considering the blurred feature bound-

aries of smoke-like objects and smoke, it is very easy to confuse the detection of clouds 

and that of smoke from forest fires in a forest environment. There is the problem of low 

interclass heterogeneity, and the foreground and background of images of smoke are dif-

ficult to effectively distinguish, which can cause false detection. In response, we embed 

multilayer coordinate attention in the backbone network, which improves its ability to 

distinguish between the smoke and background by effectively fusing the channel relations 

and location information, focusing on the location of interest to the network, suppressing 

useless information, and improving the separation of clouds and smoke. (3) Thin and fine 

smoke cannot carry sufficient information due to its inconspicuous features, which also 

weakens the accuracy of smoke detection. Moreover, the use of the CARAFE upsampling 

operator allows us to extract information more fully from the image by expanding the 

sensory fields in order to effectively improve the detection accuracy of small targets. The 

SIoU loss function is used to improve the speed and accuracy of inference during model 

training. 

2. Materials and Methods for Experiments 

2.1. YOLOv7 

YOLOv7 is the latest version of the series of YOLO [20–23]. Compared to the previous 

YOLOv5, it surpasses all known detectors in terms of both speed and accuracy. This is 

because it uses faster convolution operations and a smaller model, which allows it to 

achieve higher accuracy and faster speed at the same computational cost when detecting. 

The model of YOLOv7 mainly consists of four main parts: input, backbone, neck, and 

head. The backbone is mainly composed of multiple modules, including CBS, ELAN [24], 

and MPConv, and is used for feature extraction in image analyses. ELAN enhances feature 
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aggregation by connecting the outputs of multiple layers of convolutions. For neck, the 

traditional FPN + PAN [25,26] structure is still used to achieve the integration of high-

resolution information and high-level semantic information through the fusion of high-

level features and underlying features. The head utilizes a reparameterization structure, 

Rep, which enhances the representational capability when training and facilitates faster 

inference when testing. 

The official network framework based on YOLOv7 contains YOLOv7, YOLOv7-d6, 

and YOLOv7-e6, etc., which are different from each other. We choose the original frame-

work of YOLOv7. The structure of the network model of YOLOv7 is shown in Figure 1. 

Considering the problem of huge number of parameters in YOLOv7, we modified the 

depth multiple of YOLOv7 to 0.33 and the width multiple to 0.5, following the practice of 

YOLOv5, in order to maintain the original inference effect as much as possible while re-

ducing the number of parameters in the model. 

 

Figure 1. The network architecture of YOLOv7. 

2.2. Improvements to Lightweighting 

2.2.1. Ghost Shuffle Convolution 

Standard convolution (SConv) applies different convolutional kernels to multiple 

channels simultaneously, leading to an increase in the number of parameters required and 

a decrease in the speed of network as the network tries to extract more features. Con-

versely, depth-wise separable convolution (DWConv) stitches the outputs of separate 

depth-wise convolutions by using a 1 × 1 convolution kernel after convolution of the chan-

nels, allowing it to save a significant number of parameters as the features to be extracted 

increase, resulting in faster inference. However, as a trade-off, DWConv also leads to the 

loss of some semantic information during operation, which reduces accuracy of the model. 

The process of GSConv [27] is shown in Figure 2, which combines the advantages of 

standard convolution and depth-separable convolution. It uses SConv and DWConv to-

gether when handling the input images of forest fire smoke, and it does not completely 

cut off the links between channels as DWConv does, but tries to preserve the links as much 

as possible in order to ensure the high accuracy of the model. The results are combined 

and shuffled to enhance the nonlinear representation. For smoke targets that change with 
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fire and environmental conditions, these nonlinear features can better represent the pro-

cesses of deformation and expansion of smoke, providing more information for model to 

learn and thus enhancing its generalization ability and robustness. The mathematical ex-

pression is calculated as follows: 

𝑋𝑐 = 𝜎(𝑏𝑛(𝐶𝑜𝑛𝑣2𝑑(𝑋𝑖𝑛𝑝𝑢𝑡))) (1) 

𝑋𝑜𝑢𝑡 = 𝛿(𝑋𝑐 ⊕ 𝐷𝑊𝐶𝑜𝑛𝑣(𝑋𝑐)) (2) 

where 𝐶𝑜𝑛𝑣2𝑑  represents the two-dimensional convolution of the input image 𝑋𝑖𝑛𝑝𝑢𝑡 , 

𝑏𝑛 represents the normalization operation, 𝜎 represents the activation function, ⊕ rep-

resents the concating of the two kinds of convolution, and the final 𝛿 represents shuffle, 

aiming to obtain the final output 𝑋𝑜𝑢𝑡 by shuffling this result. 

 

Figure 2. Structure of the model Ghost Shuffle Convolution. 

However, if GSConv is used in all phases of the model, the number of layers of the 

model will increase significantly, which will increase the inference time for fast detection 

of smoke targets. Therefore, it would be better to use GSConv only in a single stage. In the 

network framework of YOLOv7, for the backbone layer, which requires a large amount of 

convolution to extract enough smoke features, a great degree of correlation between the 

channels that the standard convolution has is necessary. Therefore, we only perform con-

volutional operation replacement in the neck layer. This will reduce the redundant and 

repetitive information, thus reducing the computational cost and achieving a lightweight 

model. In this paper, to further exploit the role of GSConv, we make a further improve-

ment in ELAN by using GSELAN module to replace the W-ELAN block in the neck layer. 

The constructed GSELAN structure is shown in Figure 3. 

  
(a) (b) 

Figure 3. ELAN model before and after improvement: (a) Structure of W-ELAN; (b) Structure of GS-

ELAN. 
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By replacing the standard convolution with GSConv, which aims to reduce the com-

putational complexity and the number of parameters, a larger speedup can be obtained 

during the actual run. The input smoke image is convolved by successive GSConv convo-

lutions, and each shuffle operation is able to effectively fuse the smoke feature maps of 

different channels with a reduced number of parameters, thus approximating the result 

of the standard convolution. This allows the final output smoke image to take advantage 

of DSC while mitigating the negative impact of DSC deficiencies on the model. In addi-

tion, we add identity mapping [28] to the module, which can effectively avoid information 

loss of smoke features during transmission and enhance the robustness of the model by 

mapping the input directly to the output. 

In addition, in the original YOLOv7, we note that it uses the SPPCSPC module to 

expand the perceptual field of the model by combining a Maxpool branch and a convolu-

tion branch, which has a better feature fusion effect compared with that of SPPF when 

dealing with targets of different scales, but introduces a large number of parameters and 

a large amount of computation. In this paper, we borrow the idea of SPPF and improve 

the SPP [29] branch in SPPFCSPC to be similar to the SPPF method by replacing the orig-

inal parallel pooling with successive max-pooling operations, which can eliminate more 

redundant information and noise in the smoke image and make the obtained feature maps 

of the smoke image have better coherence. Its computational speed is further optimized 

while preventing overfitting. In addition, after the feature extraction of backbone layer, 

the attribute information and multidimensional channel information of the target image 

are obtained. We replace the convolution of SPPFCSPC with GSConv, which not only can 

reduce the cost of computation, but also can preserve the connection between each chan-

nel as much as possible. The improved GSSPPFCSPC module is shown in Figure 4. 

 
(a) 

 
(b) 

Figure 4. Spatial pyramid pooling module before and after improvement: (a) Structure of SPPCSPC; 

(b) Structure of GSSPPFCSPC. 

2.2.2. Improvements in the Activation Function 

In YOLOv7, the activation function SiLU is still used. We aim to obtain a lightweight 

model for detection of smoke that can maintain high accuracy, and activation functions 

are crucial for the computational accuracy and speed of the model. The Hardswish func-

tion is defined as shown in Equation (2), and it has the characteristics of having no upper 

bound, having a lower bound, smoothness, and non-monotonicity, which makes the pro-

cessing of the detection for activation layer more diverse. The advantages of the 

Hardswish function are two-fold: firstly, it uses linear interpolation and has good numer-

ical stability and fast calculation speed, which help to make the expression of the model 
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for smoke detection more diverse. Secondly, the Hardswish function has a simple deriva-

tion and can effectively prevent the phenomenon of neurons being difficult to activate by 

any data due to gradients approaching zero during the training of the model for smoke 

detection. 
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2.3. Improvements in Accuracy 

2.3.1. Coordinate Attention 

The use of attention mechanism in the field of image recognition can effectively help 

the network to better address the attention preference of the network and focus on the 

region of its interest. In this paper, we try to embed the coordinate attention (CA) [30] 

mechanism, which is able to obtain a better description of the smoke target by re-modeling 

both channel and spatial dimensions to capture both orientation perception and location 

information simultaneously. The flowchart is shown below (Figure 5). 

 

Figure 5. Flowchart of attention mechanism CA. 

When the feature matrix X is input, the overall flow is shown below: 

(1) Firstly, shift adaptive averaging pooling is performed simultaneously along the hor-

izontal and vertical directions, respectively, and its mathematical expression is as fol-

lows: 

𝑧𝑐
ℎ(ℎ) =

1

𝑊
∑ 𝑥𝑐

0≤𝑖<≤𝑊

(ℎ, 𝑖) (4) 

𝑧𝑐
𝑤(𝑤) =

1

𝐻
∑ 𝑥𝑐

0≤𝑗<≤𝐻

(𝑗, 𝑤) (5) 

The above expression represents two averaging pooling operations using two one-

dimensional global pooling kernels (ℎ , 1) and (1, 𝑤 ) for the image 𝑥𝑐(ℎ, 𝑤)  of the cth 

channel of the input along the vertical and horizontal directions, respectively, to obtain 

the pooling results 𝑧𝑐
ℎ(ℎ) and 𝑧𝑐

𝑤(𝑤) in both directions. 

(2) The two outputs obtained above are then stitched together and 1 × 1 convolved, and 

the flow is shown below: 

𝑓 = 𝛿(𝐶1[𝑧ℎ; 𝑧𝑤]) (6) 
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where C1 represents the 1 × 1 convolution, 𝛿 represents the nonlinear activation function, 

and f represents the result of aggregated coding from the two directions of feature vector. 

(3) Next, f is expanded along two dimensions, ℎ and 𝑤, to obtain the feature attention 

maps 𝑓ℎ and 𝑓𝑤 in two directions, and convolution operations are performed to ob-

tain 𝑔ℎ and 𝑔𝑤, respectively. 

𝑔ℎ = 𝜎(𝐶ℎ(𝑓ℎ)) (7) 

𝑔𝑤 = 𝜎(𝐶𝑤(𝑓𝑤)) (8) 

where 𝐶ℎ  and 𝐶𝑤  represent different convolution operations in two directions, respec-

tively, and 𝜎 is activation function’s sigmoid. Thus, the attention weights of the two di-

rections are obtained. 

(4) Finally, the attention weights and the original feature maps are multiplied and 

weighted to obtain the final output as follows: 

𝑦𝑜𝑢𝑡 = 𝑥 × 𝑔ℎ × 𝑔𝑤 (9) 

where x is the graph of the original special diagnosis, 𝑔ℎ represents the attentional weight 

along the direction ℎ, and 𝑔𝑤 represents the attentional weight along the direction 𝑤. 

For the thin and small smoke images, it is difficult to effectively extract information, 

so we add a multi-layer CA mechanism to the backbone network. For each input image, 

the feature weight of the h direction and the feature weight of the w direction are com-

pared with the original. The weighted fusion of images strengthens the focus on the region 

of interest, and an output image is obtained focused on the smoke target to enhance the 

model’s ability to capture and identify smoke. Meanwhile, if the model’s attention is lim-

ited to some local areas, it will miss the grasp of the overall features of the smoke, thus 

increasing the rate of false alarms. The introduction of CA can focus the model’s attention 

on the key feature areas, so that the network can grasp the overall features of the smoke 

from a global perspective, thus improving the recognition accuracy of the model. 

2.3.2. Content-Aware Reassembly of Features 

In YOLOv7, nearest-neighbor interpolation upsampling is used, which is widely ap-

plied due to its simplicity and low computational cost. However, nearest-neighbor inter-

polation only considers adjacent pixels, resulting in the failure to fully utilize the semantic 

information of the feature map. CARAFE [31], on the other hand, effectively extracts se-

mantic information from the feature map and expands the receptive field under the prem-

ise of lightweight operation. CARAFE consists of the upsampling prediction module and 

the feature recombination module, as shown in Figure 6. For the upsampling prediction 

module, the first step is to process the input image with size 𝐻 × 𝑊 × 𝐶. When the up-

sampling factor is set to 𝜎, a 1 × 1 convolutional layer is applied to compress the image 

channel. Then, convolutional kernels of size 𝑘𝑢𝑝 × 𝑘𝑢𝑝 are applied for convolutional op-

erations, expanding the number of channels to 𝜎2 × 𝑘𝑢𝑝
2  for content encoding. Finally, the 

output is normalized to reduce the number of parameters. In the feature recombination 

module, point-wise multiplication is performed on corresponding positions of the output 

feature map obtained through the above process and the feature map obtained through 

traditional upsampling, resulting in the final output value. 
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Figure 6. Sampling on CARAFE. 

Smoke images have characteristics such as thinness and limited information. The up-

sampling mechanism of CARAFE can be utilized to interpolate low-resolution feature 

maps using learnable interpolation weights, reducing information loss, and restoring de-

tails. Additionally, CARAFE introduces a context-adaptive information fusion mecha-

nism that dynamically adjusts interpolation weights based on local contextual infor-

mation, enabling it to better capture fine features of smoke and reduce errors. In this pa-

per, we replace the original upsampling method with lightweight CARAFE to obtain a 

better feature map of smoke. 

2.4. SCYLLA-Intersection over Union 

In YOLOv7, CIoU loss [32] is still used to compute the localization loss function, 

which was also utilized in YOLOv5, but the inherent properties of smoke require issue of 

mismatched angles between the predicted and ground-truth bounding boxes to be con-

sidered, which was not addressed in CIoU. SIoU [29] addresses this problem by introduc-

ing the vector angle between the predicted and ground-truth bounding boxes, fully taking 

into account the direction between them in the process of smoke detection, thereby speed-

ing up the convergence rate of the model. The redefined loss function consists of four 

parts: the angle cost (which measures the difference in angles between two objects or 

shapes), distance cost (which evaluates the spatial separation or distance between two ob-

jects), shape cost (which assesses the dissimilarity in shape characteristics between two 

objects), and IoU cost (which calculates the intersection over union (IoU) value, represent-

ing the overlapping area between two objects divided by their combined area). The spe-

cific formulas are as follows.  

(1) Angle cost: 

Λ=1 - 2× sin2 ( arcsin (
ch

σ
) - 

π

4
) (10) 

where 

ch

σ
= sin ( α) (11) 

σ=√(bcx

gt
− bcx

)2+(bcy

gt
− bcy

)2 (12) 

where α is the angle between side σ and side cw; cw, ch, and σ are the three sides of 

the right triangle in Figure 7; (bcx

gt , bcy

gt ) are the center point coordinates of the ground-

truth box; and (bcx
, bcy

) are the center point coordinates of the predicted box. 
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(2) Distance cost: 

Δ= ∑ (1 - e−(2-Λ)×ρt)

t=x,y

 (13) 

where 

ρx=(
bcx

gt
− bcx

cw
)2,  ρy=(

bcy

gt
− bcx

cw
)2 (14) 

The incorporation of angle cost and distance cost results in larger loss values when 

there is a greater difference between the angles of the two boxes, promoting a faster con-

vergence rate. 

  

(Angle cost) (Distance cost) 

Figure 7. Schematic diagram of SIoU. 

(3) Shape cost: 

Ω= ∑ (1 - e−wt)

t=w,h

θ

=(1 - e−ww)θ+(1 - e−wh)θ (15) 

where 

ww=
|w - wgt|

max ( w,wgt)
,hh=

|h - hgt|

max ( h,hgt)
 (16) 

θ controls the degree of attention paid to the shape cost, where wgt and hgt are the 

width and height of the ground-truth box, and w and h are the width and height of the 

predicted box. In this paper, following the recommendation of our original paper, θ is set 

to 4, in order to have a more reasonable focus on the shape cost. 

(4) IoU cost: 

IoU =
|B ∩ BGT|

|B ∪ BGT|
 (17) 

where B ∩ BGT  represents the intersection between the predicted and ground-truth 

boxes, and B ∪ BGT represents their union. 

The final loss function is as follows: 

SIoU_Loss=1 - IoU+
Δ+Ω

2
 (18) 
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2.5. A Lightweight Model for Detecting Forest Fire Smoke Based on YOLOv7 

In summary, the overall structure of the modified YOLOv7 used in this paper is 

shown in Figure 8, and the changes are framed by the solid green line. 

 

Figure 8. The network architecture of modified YOLOv7. 

3. Methods for Evaluation 

3.1. The Dataset 

It is well known that in the field of deep learning, the quality of the training set is 

directly related to the performance of the detection results. After extensive information 

search and inquiry, we learned that there are no standardized and reasonable datasets of 

smoke in forest environment on the web. Therefore, a unique dataset is essential. In this 

thesis, firstly, we browsed photos of forest fire smoke from drones on the internet with a 

high point of view. Since the oblique view is the angle at which forest smoke drones usu-

ally perform detection and identify it faster, our dataset consists mainly of forest fire 

smoke images in oblique view, supplemented by a blend of some nadir images. These 

images comprise typical forest fire smoke in a forest background, thin and small smoke 

photographed from a distance, and smoke with disturbances such as clouds. In addition, 

we note that the use of synthetic smoke in [33] can increase the diversity of training data 

and improve the robustness of the model. Therefore, we used the method of synthesizing 

smoke to construct the dataset by adding some synthetic images. By copying smoke layers 

into different background environments or moving smoke layers to different locations in 

the same image, we can make full use of the limited background environment and smoke 

image resources to create more scenarios of forest fire smoke and thus effectively improve 

the generalization ability of the model. 

Eventually more than 4019 images were grabbed from the web and some of them 

were synthesized using synthetic smoke. A total of 5311 images were integrated as the 

dataset for this study. Some of the images from the dataset are shown in Figure 9 below. 

It contains a variety of smoke images from the viewpoint of UAVs, such as typical forest 

fire smoke, small smoke, smoke with distractors, and synthetic smoke, which is men-

tioned above. The classification of various types of images with different viewpoints is 

shown in Table 1. 
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(a) (b) 

  
(c) (d) 

Figure 9. Typical representative images of a dataset of forest fire smoke. (a) Normal smoke; (b) 

Smoke with multiple scales; (c) Smoke with interference containing something similar to smoke in 

images; (d) Synthetic smoke. 

Table 1. Details of the dataset. 

Taken From an Overhead Perspective Taken at an Oblique Angle 

Normal smoke Normal smoke Small smoke 
Smoke with smoke-like in-

terference 
Synthetic smoke 

377 1017 968 1657 1292 

In the experiments of this paper, the dataset of forest fire smoke was randomly split 

into training, validation, and test sets in the ratio of 8:1:1. The specific number of images 

in each set is shown in Table 2. 

Table 2. Number of images in each set. 

Dataset Train Validation Test Summary 

Number 4249 531 531 5311 

3.2. Evaluation of the Model 

This study evaluates the quality of the model from two aspects: accuracy of recogni-

tion and lightweight degree of the model. Therefore, AP@.5 and AP@.5:.95 are selected as 

two indicators to evaluate prediction accuracy of the model. Gigabit floating point opera-

tions per second (GFLOPs), frames per second (FPS), and parameters are chosen as three 

indicators to evaluate lightweight degree of the model. 

(1) AP indicators: In the confusion matrix, TP refers to the number of smoke samples 

that are correctly predicted as smoke, FN refers to the number of smoke samples that are 

incorrectly predicted as non-smoke, FP refers to the number of non-smoke samples that 

are incorrectly predicted as smoke, and TN refers to the number of non-smoke samples 

that are correctly predicted as non-smoke. Based on these, precision rate (P) and recall rate 

(R) can be defined, where P reflects the accuracy of the smoke detection and R reflects the 

completeness of the smoke detection. The formulas for calculating P and R are shown in 

Equation (19) and Equation (20), respectively. 
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P=
TP

TP + FP
 (19) 

R=
TP

TP + FN
 (20) 

AP is the area under the PR curve and is used to describe the average accuracy of 

forest smoke detection. Its formula is shown in Equation (21). 

AP =
1

r
∑ Pi

r

i=1

 (21) 

(2) GFLOPs: GFLOPs is used to describe the time complexity of the model, which is 

positively correlated with the performance of the hardware required. The formula for cal-

culating GFLOPs is shown in Equation (22). 

GFLOPs = (2CiK
2 − 1)HWC0 (22) 

where Ci and C0 represent the number of input and output channels, K represents the 

size of the kernel, and H and W are used to describe the size of the feature map. 

(3) FPS: FPS stands for the number of images that can be processed per second. Time 

refers to the amount of time required to process each image frame, including image pre-

processing, inference, and non-maximum suppression. The formula for calculating FPS is 

shown in Equation (23). 

Time = Pre − process + Inference + NMS (23) 

Therefore, FPS can be used to describe the speed of model detection. Its value is equal 

to the number of images the model processes per second. The formula for calculating FPS 

is as follows: 

FPS =
1

Time
 (24) 

(4) Parameters: Parameters represents the number of parameters the model uses, 

measured in millions. It affects the final size of the output model after training. 

3.3. Comparison with Other Models 

It is essential to compare the detection effects of our model with those of various other 

mainstream networks, so as to further verify the effectiveness of the network model we 

proposed. We chose the networks Faster R-CNN [34], EfficientNet [35], SSD [36], Retinanet 

[37], and YOLOv5, and a brief description of these models is shown below. 

(1) Faster R-CNN: Faster R-CNN is a popular object detection model that combines re-

gion proposal network (RPN) and Fast R-CNN. It achieves high accuracy but has a 

slower inference speed compared to that of other models. 

(2) EfficientDet: EfficientDet is a state-of-the-art object detection model that achieves 

high accuracy while being efficient in terms of computation. It uses a compound scal-

ing method to balance accuracy and efficiency. 

(3) SSD: SSD (Single Shot MultiBox Detector) is a fast object detection model that 

achieves real-time performance. It uses multiple layers for predicting bounding boxes 

and class probabilities but may have lower accuracy compared to that of some other 

models. 

(4) RetinaNet: RetinaNet is an object detection model that addresses the problem of class 

imbalance during training by introducing a focal loss. It provides a good balance be-

tween accuracy and speed but may not achieve the highest accuracy compared to 

that of some other models. 
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(5) YOLOv5: YOLOv5 is part of the You Only Look Once (YOLO) series, known for its 

real-time object detection capabilities. YOLOv5 is lightweight and achieves a good 

balance between accuracy and speed. It has a smaller model size and is suitable for 

various applications. 

4. Results 

4.1. The Environment for Training and Hyper-Parameters 

The runtime environment used in this article is shown in Table 3. The parameters 

related to training the model for detecting forest smoke are shown in Table 4. 

Table 3. Experimental conditions. 

Experimental Environment Details 

Programming language Python 3.8 

Operating system Windows 10 

Deep learning framework PyTorch 1.10.0 

GPU NVIDIA GeForce GTX 3080 

GPU acceleration tool CUDA:11.0 

Table 4. Training parameters of the forest fire detection model. 

Training Parameters Details 

epochs 300 

batch-size 16 

img-size (pixels) 640 × 640 

initial learning rate 0.01 

optimization algorithm SGD 

4.2. Analysis of Module Effectiveness 

To verify whether the introduction of individual modules in our model outperforms 

the baseline, we performed an analysis of the modules’ effectiveness. 

4.2.1. Effectiveness of Hardswish 

Activation functions play a critical role in neural networks, but they can also lead to 

the well-known problem of vanishing or exploding gradients, which can have a significant 

impact on model training and accuracy. Therefore, a thorough analysis of the sensitivity 

of activation functions is necessary to evaluate their suitability in deep learning models. 

This can be achieved by examining the performance of the model under various activation 

functions and comparing the results to identify which function is the most effective. In 

order to verify whether the HardSwish activation function we selected has better ad-

vantages compared to other activation functions, we compared the results of different ac-

tivation functions for the first 250 rounds of training. Figure 10 shows the experimental 

results.  
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Figure 10. Comparison of different activation functions. 

As indicated by the above figure, the HardSwish activation function exhibits a faster 

convergence speed, which can improve the efficiency and stability of gradient propaga-

tion, thereby accelerating the training of the network and leading to greater stability. 

Therefore, selecting HardSwish for the research of this paper is a wise choice. 

4.2.2. Effectiveness of CA 

In this section, to verify the effectiveness of the CA attention mechanism we selected, 

we compared it with the Squeeze-and-Excitation (SE) block [34] and the Convolutional 

Block Attention Module (CBAM) [35] by incorporating them into YOLOv7, and the results 

are shown in Table 5. 

Table 5. Comparison of different attention mechanisms. 

MODEL P/% R/% AP@.5/% 

YOLOv7 69.8 68.1 74.3 

YOLOv7-CBAM 67.9 65.1 71.5 

YOLOv7-SE 76.5 65.1 75.6 

YOLOv7-CA 75.3 68.9 76.9 

We can judge the quality of the attention mechanism by evaluating its AP@.5, P, and 

R for our own dataset. It can be seen that when CA is added to the model, the AP@.5 

increases by 2.6%, P increases by 5.5%, and R increases by 0.8%, with good performance 

in all indicators. Therefore, we selected CA to enhance the feature extraction ability of 

YOLOv7. 

4.2.3. Effectiveness of SIoU 

In our experiments, we use four loss functions, GioU [36], DIoU, CIoU, and SIoU, 

respectively, on the basis of the baseline and observe their performance in identifying our 

dataset, respectively, and the results are shown in Figure 11. Observing the experimental 

results, we find that the use of SIoU can make the model converge faster than other loss 

functions, and the final stable loss value achieved is the lowest among the four loss func-

tions, which fully illustrates that our choice of SIoU as the loss function is quite reasonable. 
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Figure 11. Comparison of different loss functions. 

4.3. Ablation Experiments 

The ablation experiment is essential to verifying the necessity of introducing each 

module in the final model and to exploring the impact of each module on the model. The 

effects of the model after introducing different modules were tested on the same test set, 

and the experimental results are shown in Table 6, where GSI represents the integration 

of GSELAN and GSConv. 

Table 6. Results of ablation experiment. 

MODEL P/% R/% AP@.5/% AP@.5:.95/% Parameters/M GFLOPs FPS 

YOLOv7 69.8 65.0 74.3 47.4 9.32 26.7 62.89 

YOLOv7-CA 70.3 71.9 76.9 49.8 9.38 26.8 64.1 

YOLOv7-SIoU 72.3 73.1 77.7 51.1 9.32 26.7 65.3 

YOLOv7-GSELAN 69.8 73.2 75.5 48.8 8.67 25.4 67.3 

YOLOv7-GSSPPFCSPC 73.1 67.7 74.8 48.1 8.45 26.0 64.1 

YOLOv7-CARAFE 71.7 71.6 76.8 49.8 9.36 26.8 60.25 

YOLOv7-CA-SIoU 74.0 71.2 78.2 51.2 9.38 26.8 64.5 

YOLOv7-CA-SIoU-GSI 73.8 71.5 79.2 51.0 7.93 25.0 67.34 

Ours 77.1 71.8 80.2 52.8 7.96 25.1 63.39 

From the data in the table, it can be seen that the introduction of attention mecha-

nisms, the improvement in loss functions, and the use of CARAFE upsampling mainly 

improve the indicators of AP@.5 and AP@.5:.95, while the other metrics used to measure 

the degree of lightness change little. This improves the accuracy of the model’s prediction 

without increasing the cost of the model’s calculation. On the other hand, the introduction 

of GSELAN and GSSPPFCSPC reduces the parameters by 0.65 M and 0.87 M, whereas the 

GFLOPs reduced them by 0.65 M and 0.92 M, and the FPS increased them by 4.41 and 

1.21, respectively. The AP@.5 and AP@.5:.95 do not change significantly, indicating that 

the introduction of these two modules reduces the computational cost of the model with-

out changing the accuracy, speeds up the convergence speed, and makes the model more 

lightweight. 
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As mentioned above, the introduction of the CA, SIoU, and CARAFE modules sepa-

rately successfully improves the accuracy of the model’s recognition, while the introduc-

tion of the GSConv and Hardswish modules makes the model more lightweight. In the 

following experiments, other modules are continuously introduced based on the model 

embedding CA. In experiment 7, the replacement of the CIoU loss function with SIoU 

allows for the model to better learn the location and size information of smoke, increasing 

the accuracy of smoke detection from 76.9% (experiment 2) to 78.2%. Then, after introduc-

ing the lightweight convolution GSConv, the parameters are reduced by 1.45 M, and there 

is a 1.8 reduction in the GFLOPs and a 2.84 increase in the number of FPS, because GSConv 

can help reduce the size and computational complexity of the model, making the system 

of smoke detection more rapid and efficient in processing data. Finally, adding CARAFE 

upsampling improved the model’s accuracy by 2% without noticeable changes in the com-

putational speed, indicating that CARAFE upsampling can adaptively increase the reso-

lution of smoke images for different sizes and resolutions, helping the network better per-

ceive smoke information in complex scenes, thus improving the generalization and accu-

racy of the model. The final model proposed in this paper achieves an AP@.5 of 80.2% and 

a number of FPS of 63.39, while the GFLOPs are only 25.1. Compared to the baseline, the 

indicators P and R are improved by 7.3 and 6.8, respectively, demonstrating the higher 

accuracy of the prediction. On the other hand, the AP@.5 is improved by 5.9% and the 

GFLOPs are reduced by 1.6, enabling better detection results to be achieved while using 

fewer computational resources. 

To demonstrate the significant improvements of the enhanced model compared to 

the baseline in terms of its prediction accuracy and lightweight design, significance tests 

can be performed for several metrics, including the AP@.5, parameters, GFLOPs, and FPS. 

Assuming no significant differences exist between our model and the baseline, the cor-

rected paired Student’s t-test was chosen as the statistical test. The results of the signifi-

cance tests are presented below (Table 7). 

Table 7. Results of the significance tests. 

Indicators AP@.5 Parameters GFLOPs FPS 

Null Hypothesis There is no significant difference between our model and the baseline. 

Statistical Test Method Corrected paired Student’s t-test. 

p-value/% 2.21 0.93 0.55 0.86 

According to the aforementioned test results, at a significance level of 5%, we reject 

the null hypothesis, indicating that our model shows a statistically significant difference 

compared to the baseline in terms of the specified metrics. Therefore, the improved model 

exhibits significant enhancements in both its prediction accuracy and lightweight perfor-

mance compared to those of the baseline. 

4.4. Comparison Experiments 

In order to further verify the effectiveness of the network model proposed, we com-

pared the detection effects of various mainstream networks, including Faster R-CNN [37], 

EfficientNet [38], SSD [39], Retinanet [40], and YOLOv5, etc., for the same dataset. The 

performance results are shown in Table 8. 

Table 8. Results of comparison experiments. 

MODEL AP@.5/% GFLOPs Parameters/M FPS 

Faster R-CNN 81.1 206.66 41.12 38.8 

EfficientDet 71.9 116.73 18.34 27.8 

SSD 68.2 342.75 23.75 94 

Retinanet 73.5 153.79 19.61 50.1 
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YOLOv5m 75.1 48.2 20.8 80.2 

Ours 80.2 25.1 7.96 63.39 

From the above table, it can be seen that Faster R-CNN, as a two-stage network, has 

an advantage of about 1% over the proposed network, but its number of parameters and 

amount of computation are much more than those of the algorithm proposed in this pa-

per. Our model has the best results in terms of its accuracy and detection speed compared 

to other one-stage detection algorithms. Compared to the two-stage target detection net-

work Faster R-CNN, there is a slight difference in accuracy, but there is a difference of 

about seven times in terms of the parameters. Our proposed improved algorithm has a 

broader application scenario with fewer parameters, a faster speed, and better detection 

accuracy, and can play a greater role in detecting forest fire smoke. 

4.5. Testing in Different Scenarios 

We tested the performance of the unimproved YOLOv7 model and our improved 

model in detecting forest fire smoke in different scenarios, and some test results are shown 

in Figure 12. Observing the test results, in the test of group (a), the original YOLOv7 model 

was unable to detect the smoke in the image, even for very obvious smoke with a large 

volume, while our model performed quite well in terms of detection; in the test of group 

(b), the original YOLOv7 model was unable to detect the complete smoke target and could 

only detect a part of the smoke, indicating its insufficient ability to extract and fuse the 

features of smoke. In contrast, our model was able to accurately identify the complete 

smoke target and could distinguish smoke and fog very well, even in cases in which 

smoke and fog were stuck together. This demonstrates the effectiveness of our proposed 

improvements. 

  

  
(a) 
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(b) 

Figure 12. Test results of the original YOLOv7 model and the improved YOLOv7 model in different 

scenarios: (a) The baseline was unable to detect smoke, while the improved model was able to detect 

smoke; (b) The baseline was unable to detect the complete smoke, while the improved model was 

able to accurately identify the complete smoke. 

In addition, the model proposed in this article can recognize small smoke well, as 

shown in the (a) group of pictures in Figure 13. The model can detect the presence of small 

smoke early, so that forest fires can be detected and extinguished in a timely manner. At 

the same time, in the case of the existence of similar smoke, the model can eliminate the 

interference containing whatever is similar to the smoke in the images and achieve the 

high-precision detection of forest smoke in outdoor multi-environmental backgrounds, as 

shown in the (b) group of pictures in Figure 13. 

  



Remote Sens. 2023, 15, 3790 20 of 23 
 

 

  
(a) (b) 

Figure 13. Recognition results of small smoke and smoke with interference containing something 

similar to smoke in images: (a) Small smoke; (b) Smoke with interference containing something 

similar to smoke in images. 

5. Discussion and Conclusions 

Predicting and preventing forest fires is crucial to protecting forests. On one hand, 

when comparing the development histories of the means of detecting forest fire smoke, 

manual detection is less effective and too costly, while detection by using instruments is 

easily disturbed by fine particles such as dust in the environment. Compared with these 

two methods, our method is based on computer vision, uses pattern recognition for fea-

ture extraction and classification, is able to detect smoke well, has low deployment costs, 

and is a good strategy for detecting forest fire smoke. On the other hand, in smoke detec-

tion based on deep learning, many scholars have proposed network structures, such as R-

CNN or other algorithms [41], which do improve the accuracy of smoke detection to some 

extent, but they are more demanding in terms of hardware than the LMDFS proposed in 

this paper, making them difficult to deploy to meet real-time requirements. Moreover, 

they cannot provide an effective solution for detecting small smoke and smoke containing 

disturbances. Although FfireNet [42] provides a faster detection method, there is still a 

possibility to improve its accuracy. Our model takes both high accuracy and low compu-

tational costs into account and improves the detection accuracy of small smoke by aggre-

gating larger sensory fields. Furthermore, our model can also more effectively separate 

the essential difference between forest fire smoke and smoke-like smoke, which solves this 

painful problem in the field of detecting forest fire smoke and provides a new idea for 

preventing and controlling forest fires. 

YOLOv7, as the latest target detection model, has a high capability to extract and 

aggregate the features of images, thus achieving a high accuracy in target recognition. 

However, better detection results require a large computational expenditure, which is in-

convenient for the model’s deployment in edge devices. For this reason, we built the GS-

ELAN module by using GSConv. GSConv is able to improve the effectiveness of convo-

lution while enhancing the calculation efficiency through the effective combination of 

DWConv and SConv. So, it is an efficient means to lighten the model. Taking the GS-ELAN 

module constructed in this paper as an example, the problem of a possible lack of links 

for GSConv due to the replacement of convolution can be eliminated, and it is helpful for 

the transfer and flow of information in the model in that it introduces identity mapping. 

In addition, we borrow the structure of the SPPF to improve the SPPCSPC, which can have 

a higher computational efficiency and training efficiency with fewer parameters. Then, we 

add a multi-layer CA mechanism to the feature extraction network, because under a forest 

environment, there exist a large number of smoke-like disturbances, such as floating 

clouds, atmospheric fog, etc. Due to their similar characteristics to those of forest fire 

smoke, the traditional feature extraction network cannot accurately extract the features of 

forest smoke. The addition of CA significantly enhances the model’s ability to extract 

smoke features and can more effectively separate the essential differences between forest 
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fire smoke and other clouds, thus reducing the false detection rate of non-smoke. In addi-

tion, in regards to the characteristics of the thinness and fineness of small smoke produced 

in the early stages of a forest fire, especially for images of forest smoke taken at long dis-

tances with long views, its shape is even smaller. It is more difficult for feature fusion to 

detect this than the typical smoke that is already formed, i.e., there is a possibility of smoke 

being filtered out. For this reason, we add CARAFE upsampling, which can help the net-

work perceive a wider range of contextual information by expanding the perceptual field 

of the model, and improve the capability of feature representation by contextual fusion 

judgments in order to extract and fuse these fine features. Finally, we use the loss function 

SIoU to replace the original localization overlap loss function by judging the angular dif-

ference between judgement boxes, which not only allows for fast convergence during 

training to improve the model’s accuracy, but also allows for the fast screening of NMS 

during detection to locate smoke locations more quickly and accurately, which is also es-

sential for the fast detection of forest fire smoke. The final experimental results for the 

constructed dataset demonstrate that the model proposed achieves an AP@.5 of 80.2%, a 

number of FPS of 63.39, and a total number of parameters of 7.96 M. Compared to the 

baseline, the proposed model shows comprehensive improvements. Furthermore, when 

compared to other detectors of the same class, it achieves the best performance for all 

indicators. Its lighter weight and better detection performance make it more deployable 

in the practical tasks of detecting forest fire smoke. In addition, we note the important role 

of sensors in fire detection tasks. Abeer D. Algarni et al. [43] compare multiple sensors in 

wildfires. The advantages and limitations of detection have inspired us to consider using 

sensors, such as thermal infrared remote sensors, to improve the detection of forest fire 

smoke from a multidimensional direction in our later studies. 

6. Future Work 

Our experimental results demonstrate that the model proposed in this paper has a 

wide range of applications. On one hand, it can be installed on drones and watchtowers 

equipped with video surveillance, which can be used for the real-time prediction of incip-

ient fires or fires that have not yet occurred; on the other hand, it can also be installed on 

fire cameras for observing and describing the development of fires that have already oc-

curred, providing reference for the rescue work of firefighters. In future research, we will 

further explore its coherence with other monitoring equipment. 

In the field of forest fire detection, wildfire detection based on satellite imagery has a 

deep research foundation [44,45], but it also has some shortcomings. For instance, it is 

easy to detect large-scale fire situations because satellite images usually cover a large area, 

while it is not easy to detect the features of smoke in the early stage of a fire, especially 

small smoke, and it is crucial for forest fires to be extinguished as early as possible. To 

address the above issues, our model has good potential for application. Firstly, our model 

performs excellent when detecting small smoke and smoke with smoke-like inference. 

Secondly, our model is designed to be lightweight and suitable for resource-constrained 

environments, such as emergency response sites or platforms such as UAVs. This makes 

our model easy to deploy and integrate into existing satellite-imagery-based wildfire de-

tection systems. 

Certainly, the model proposed in this article also has some limitations. The model 

mainly focuses on detecting forest smoke during the daytime, and the dataset used is 

mostly from the daytime. However, the risk of forest fires occurring at night is also high. 

Therefore, in our next study, we will incorporate data on forest smoke at night to improve 

the generalization ability and broad applicability of this model. 
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