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A B S T R A C T   

Urban thermal anomalies profoundly impact human society, affecting daily life, public health, and residential 
comfort. Prior studies linked thermal anomalies to urban morphology evolution and land use change during 
urbanization based on multi-indicator quantification of urban morphology and linear regression modeling. 
However, it remained unclear which urban morphology elements predominantly dominate thermal anomalies 
and whether their impact is solely linear, and understanding on the diverse mechanisms through how urban 
morphology influences various thermal anomalies across seasons remains limited. Therefore, this study 
employed convolutional neural networks and interpretable machine learning (Grad-CAM and SHAP) to explore 
nonlinear relationships between urban morphology and thermal anomalies, focusing on comparisons between 
different types of anomaly events across time. The main findings indicated: (1) Grad-CAM’s identification of 
pivotal hotspot pixels and SHAP’s interpretability assessment highlighted that crucial urban morphology factors 
contributing to thermal anomalies include the area of green spaces, water spaces, the number of residential 
facilities, building floor area ratio, and the count of industrial production facilities. (2) Clear nonlinear re
lationships were observed between dominant urban morphology factors and the occurrence of thermal anom
alies, which confirming the existence of multiple thresholds and activation levels, as demonstrated through 
SHAP’s partial dependency analysis. The dynamic complexity of these associations significantly varied 
depending on the type of event and the timing of thermal anomalies. These findings offer actionable guidance for 
urban planners to refine climate-friendly strategies, revealing the heterogeneity of these relationships across time 
and seasons through multi-scenario analysis and providing tailored insights for climate-sensitive urban planning.   

1. Introduction 

With the rapid pace of urbanization, the Earth’s surface is increas
ingly displaying pronounced non-homogeneous characteristics, result
ing in significant disparities in thermal environments across various 
regions. Thermal anomalies in urban areas stand out as tangible evi
dence of such phenomena. Urban thermal anomalies denote conspicu
ous temperature variations observed within specific city zones in 
contrast to their surrounding areas (Twardosz and Kossowska-Cezak, 
2021). These variances, often depicted as urban heat or cold islands 
(Rizwan et al., 2008; Zhang et al., 2015), wield substantial direct and 
indirect repercussions on human existence, impacting daily routines 
(Emmanuel and Fernando, 2007), public health (Li et al., 2016), and 
residential comfort (Sharma et al., 2021). Severe anomalies can 

precipitate heat stress (Kovats and Hajat, 2008), particularly affecting 
vulnerable demographics such as the elderly, children, and individuals 
with chronic ailments (Eugenio Pappalardo et al., 2023; Qiang et al., 
2023; Oliveira et al., 2022). Moreover, these anomalies often worsen 
social inequalities, disproportionately impacting low-income areas due 
to the lack of water bodies, green spaces, and trees that help regulate 
temperatures (Ghosh and Das, 2018; Loughner et al., 2012). Under
standing these urban thermal anomalies is crucial for grasping urban 
climates, enhancing environmental quality, improving living conditions, 
and devising strategies to tackle climate change (Hu and Li, 2020). 

Previous research has firmly established the correlation between 
urban thermal anomalies and the evolution of urban structures in the 
context of urbanization, coupled with shifts in land use patterns. These 
research endeavors have extensively explored the linear correlations 

* Corresponding author. 
E-mail address: renyujie@njfu.edu.cn (Y. Ren).  

Contents lists available at ScienceDirect 

Ecological Indicators 

journal homepage: www.elsevier.com/locate/ecolind 

https://doi.org/10.1016/j.ecolind.2024.112024 
Received 15 January 2024; Received in revised form 3 April 2024; Accepted 11 April 2024   

mailto:renyujie@njfu.edu.cn
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2024.112024
https://doi.org/10.1016/j.ecolind.2024.112024
https://doi.org/10.1016/j.ecolind.2024.112024
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ecological Indicators 162 (2024) 112024

2

between urban thermal anomalies and various urban morphological 
factors, utilizing meticulously constructed econometric models (Stone 
and Rodgers, 2001; Yin et al., 2018; Hathway and Sharples, 2012). 
These factors encompass two-dimensional and three-dimensional 
architectural configurations, surface biophysical parameters, urban 
landscape composition, and socioeconomic indicators (Liang, 2021; Liu 
et al., 2021; Liu et al., 2022; Sanagar Darbani et al., 2021; Schwarz and 
Manceur, 2015; Zhou et al., 2017). In summary, the theoretical insights 
gleaned from these studies underscore the critical importance of man
aging urban morphology as a fundamental approach to mitigating urban 
thermal anomalies (Steeneveld et al., 2011; Watkins et al., 2023; Kang 
et al., 2022; Peng et al., 2022; Chen et al., 2024). The configuration of 
urban functional spaces, architectural design, and the distribution of 
diverse infrastructural components have been identified as pivotal fac
tors influencing the occurrence of thermal anomalies (Boukhabla et al., 
2013; Fitria et al., 2019; Liu and Morawska, 2020; Meng et al., 2022). 
However, due to the inherent constraints of conventional econometric 
models, the examination of their interrelations in these studies has 
predominantly remained confined to linear relationships (Zhao and Du, 
2016; O’Shea and Nash, 2023; Parsa, 2020; Selvaraju et al). Indeed, 
recent experimental research has highlighted variations in the mecha
nisms through which certain urban morphology features, such as green 
spaces, impact ecological indicators like air pollutant concentrations, 
across different scales. These correlation mechanisms exhibit potential 
non-linear characteristics (Xing, 2020; Abitbol and Karsai, 2020). In 
exploring non-linear relationships, machine learning models, particu
larly XGBoost models, have demonstrated significant efficacy and are 
extensively employed in environmental and ecological research. These 
models facilitate real-time reporting of the non-linear relationship of 
any variable within the model by tracking the distribution of model 
predictions with the training data. 

Hence, by synthesizing insights from the literature review alongside 
recent advancements in the field, this study aims to introduce a machine 
learning model for identifying key urban morphological indicators 
influencing urban thermal anomalies, and also intends to explore their 
nonlinear influence mechanisms. Our primary focus lies in addressing 
two key research inquiries pertaining to the correlation between urban 
structure and thermal anomalies: (1) Identification of urban morphology 
factors influencing thermal anomalies across diverse time spans and 
seasons.; (2) Exploration of the nonlinear relationships between urban 
morphological factors and thermal anomalies across varying time spans 
and seasons. By delving into these inquiries, we aim to shed light on the 
intricate dynamics shaping urban thermal environments. To achieve 
these objectives, this study proposed a novel method utilizing remote 
sensing imagery, convolutional neural networks (CNNs), and inter
pretable machine learning techniques. Remote sensing imagery pro
vided detailed urban information for thorough urban morphology 
analysis (Zhao and Du, 2016). CNNs efficiently captured the intricate 
relationship between urban morphology and thermal anomalies, 
considering nonlinearities and spatial correlations (O’Shea and Nash, 
2023). Incorporating interpretable machine learning methods like SHAP 
and Grad-CAM (Parsa, 2020; Selvaraju et al) helped interpret the 
model’s predictions, enabling a deeper understanding of the nonlinear 
relations between urban morphology and thermal anomalies, including 
nonlinear patterns and threshold effects. These methodologies show 
promise in examining urban spatial evolution, changes in spatial usage 
concerning population patterns (Xing, 2020), and socioeconomic levels 
(Abitbol and Karsai, 2020). 

In essence, this study trained a CNN model to classify remote sensing 
imagery slices and simulate urban thermal anomalies. Afterwards, Grad- 
CAM was utilized to identify the key urban morphology features linked 
to these anomalies, clarifying the model’s focus points. Finally, the 
XGBoost model underwent additional training and visualization using 
SHAP, aiming to explain the nonlinear connection-focusing on nonlinear 
patterns, activation levels, and threshold effects-between urban 
morphology and thermal anomalies across different time scenarios. The 

elucidation of the nonlinear relationship between urban morphology 
and thermal anomalies in this study not only enhances theoretical un
derstanding in the realms of urban planning and thermal environment, 
but also furnishes a quantitative foundation for the formulation of sus
tainable urban planning strategies aimed at mitigating thermal anom
alies. Specifically, by delineating the various types, thresholds, and 
activation levels of key urban morphology indicators that exhibit cor
relation with urban thermal anomalies, this research facilitates the 
designation of precise urban morphology benchmarks conducive to 
effective mitigation efforts. 

2. Materials and methods 

2.1. Experimental setup and study area 

In the specific experimental procedure, this study was primarily 
structured into four steps (Fig. 1). 

Step 1: Remote sensing imagery data preprocessing. The founda
tional dataset underwent meticulous curation procedures, involving the 
acquisition, cropping, and classification of raw urban remote sensing 
images containing thermal anomaly information. The designated locale 
for the collection site was the central region of Nanjing in Jiangsu 
Province, China, spanning coordinates from 118◦31′36″ E, 32◦16′44″ N 
to 118◦55′42″ E, 31◦51′15″ N. After image acquisition, a segmentation 
process was implemented, yielding slices with varying widths of 250 m, 
300 m, 500 m, 750 m, and 1500 m, in line with methodologies employed 
in prior studies utilizing remotely sensed map slices as primary data 
sources (Xing, 2020; Abitbol and Karsai, 2020). Systematic annotation 
of these segmented slices followed, encompassing observed annual 
average land surface temperatures and the identification of thermal 
anomalies, including both cold and heat islands, throughout the year 
2018. The resultant annotated dataset, comprising remote sensing image 
slices, served as the foundational training data for a Convolutional 
Neural Network (CNN)-based image classifier model. Detailed data la
beling schemes adopted during this process are elucidated in Section 
2.2.1 for comprehensive understanding. 

Step 2: Thermal anomalies simulation. After completing the data 
preparation phase, a fine-grained image classifier model utilizing the 
ResNet-18 architecture was trained to simulate urban thermal anomalies 
in Nanjing during the year 2018. To validate the efficacy of the model, 
this study opted for Shanghai as a comparative locale due to its simi
larity in climate and socio-economic characteristics with Nanjing. 
Notably, both cities experience a subtropical monsoon climate charac
terized by concurrent periods of heat and rainfall, and exhibit analogous 
temperature and humidity trends. Furthermore, they serve as pivotal 
regional political and economic centers, exerting significant influence 
within their respective regions. The rapid urban expansion experienced 
by both cities has engendered comparable challenges commonly asso
ciated with metropolitan areas of considerable scale. This congruence in 
climate and socio-economic factors offers a consistent backdrop for the 
validation of the model. Remote sensing image slices covering the cen
tral urban region of Shanghai (121◦22′12″ E, 31◦18′8″ N to 121◦45′19″ E, 
30◦52′26″ N) were employed, alongside data pertaining to the annual 
average land surface temperatures and thermal anomalies observed in 
2018. This compilation yielded a comprehensive test dataset essential 
for evaluating the accuracy of the developed model. 

Step 3: Identification of morphology factors related to thermal 
anomalies. Afterwards, the Grad-CAM was utilized to scrutinize the 
fundamental mechanisms of the constructed urban thermal anomalies 
image classifier and to pinpoint urban morphological factors associated 
with these anomalies. Applying back-propagation to trained weight 
matrices onto parameter layers enabled the visualization and derivation 
of gradient matrices that matched the output feature layer dimensions. 
Weighted vectors for feature layer channels were produced via global 
spatial average pooling, resulting in heatmaps known as category acti
vation maps. Furthermore, the study quantitatively examined 
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correlations between feature values in heatmap pixel areas and urban 
morphology, revealing spatial connections between urban morphology 
and thermal anomalies. 

Step 4: Detection of the nonlinear relations between morphology 
and thermal anomalies. The XGBoost model underwent additional 
training and visualization utilizing SHAP to elucidate the non-linear 
relationships between urban structure and thermal anomalies across 
diverse temporal scenarios. Specifically, the XGBoost regression model 
was constructed with Grad-CAM heat values derived from the thermal 
anomalies simulation model at resampled pixel locations as the depen
dent variable, while urban morphology factors served as the 

independent variables. Moreover, the application of SHAP facilitated a 
visual examination of the non-linear regression process, accentuating 
nonlinear patterns, activation levels, and threshold effects. 

2.2. Data sources and preprocessing 

2.2.1. Urban thermal anomalies dataset 
The thermal anomalies data (Fig. 2) utilized in this study were pri

marily sourced from the Yale Center for Earth Observation (Version 5) 
(Chakraborty and Lee, 2019). This dataset covered annual, summer, and 
winter surface urban heat island (SUHI) and surface urban cold island 

Fig. 1. Research Framework.  

Fig. 2. Study area and sample of datasets.  
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(SUCI) intensities data for over 10,000 major cities worldwide. It was 
compiled using MODIS 8TERRA and AQUA Land Surface Temperature 
(LST) products, the LANDSCAN urban extent database, 2010 GLOBAL 
multi-resolution terrain elevation data, and European Space Agency 
(ESA) Climate Change Initiative (CCI) land cover datasets, employing a 
simplified urban extent algorithm (“Global Surface UHI Explorer | 
Center for Earth Observation, 2023). 

Specifically, this product provided mean intensity data for urban 
cluster thermal anomaly events at a pixel level between 2003 and 2018, 
downscaled to a resolution of 300 m. Distribution and intensity data for 
urban cold islands and urban heat islands were extracted for Nanjing 
and Shanghai in 2018 from the subsets 
“Summer_UHI_yearly_pixel_2018″ and ”Winter_UHI_yearly_pixel_2018″ 
respectively. The data retrieval process involved the utilization of the 
Google Earth Engine platform to obtain original “.tiff” format data at a 
300-meter resolution. The raw data used in this study, which illustrate 
the spatial distribution of the thermal environment in Nanjing and 
Shanghai, are provided in detail in Appendix 1. 

2.2.2. XYZ tiles remote sensing imagery dataset 
The urban remote sensing imagery data (Fig. 2) utilized in this study 

were primarily sourced from Gaode Maps’ XYZ tiles (Huang, 2019). 
These map image tiles, acquired via the XYZ protocol, predominantly 
featured RGB three-band formats such as PNG, diverging from conven
tional remote sensing images that typically encompass multiple bands 
(Mete and Yomralioglu, 2021). Traditional remote sensing satellites 
were equipped with sensors capturing information across diverse bands 
(Zhu, 2017), facilitating the extraction of comprehensive surface infor
mation across various domains (Zurowietz et al., 2018). In contrast, XYZ 
protocol-based tiled remote sensing images typically comprised stan
dard visible light bands, offering fundamental geographic information 
and map visualization with a high degree of accessibility (Benhammou, 
et al., 2022). Within the scope defined in Section 2.1, we gathered 3- 
meter precision PNG format remote sensing images encompassing cen
tral Nanjing and Shanghai from Gaode Maps’ XYZ tiles. The acquisition 
of these images was executed utilizing the XYZ tiles tool embedded in 
QGIS. To prepare the dataset for simulation models targeting thermal 
anomalies, the images were systematically cropped into various widths. 
During the segmentation process of remotely sensed maps in XYZ tile 
format, we drew upon insights from previous studies involving image 
manipulation and analysis (Xing, 2020; Abitbol and Karsai, 2020). It is 
widely observed within the urban study field domain that resizing im
ages to dimensions ranging from 200 to 2,000 m yields optimal results. 
Notably, varying image dimensions exhibit distinct performance char
acteristics across different scales. Consequently, we opted to segment 
the remote sensing images into five specific sizes: 250 m, 300 m, 500 m, 
750 m, and 1500 m, resulting in a total of 60,450 slices. These slices 
underwent annotation, classifying them into 9 distinct labels based on 
the average annual surface temperatures of 2018 and the occurrence of 
thermal anomalies. The assigned labels include “No thermal anomaly 
(AVG),” “Summer daytime heat island (SDUHI),” “Summer nighttime 
heat island (SNUHI),” “Summer daytime cold island (SDUCI),” “Summer 
nighttime cold island (SNUCI),” “Winter daytime heat island (WDUHI),” 
“Winter nighttime heat island (WNUHI),” “Winter daytime cold island 
(WDUCI),” and “Winter nighttime cold island (WNUCI).” 

2.2.3. Urban morphology dataset 
The urban morphology data (Fig. 2) utilized in this study were pri

marily sourced from the OpenStreetMap platform. OpenStreetMap 
(OSM) stood as an open-source Geographic Information System (GIS) 
project that furnished global-scale geographic data represented in geo
factor forms such as points, lines, and polygons. The platform’s 
geographic dataset encompassed diverse features, including but not 
limited to roads, buildings, water bodies, subway lines, forests, moun
tains, shops, restaurants, among others (Vargas-Munoz et al., 2021). The 
raw data used in this study, which illustrate the spatial distribution of 

the urban morphology in Nanjing, are provided in detail in Appendix 1. 
In the specific context of this study, we predominantly obtained 

vector graphical data of green spaces, water bodies, main urban roads, 
secondary urban roads, assorted buildings, social service facilities 
(hospitals, schools, libraries, community centers, etc.), production fa
cilities (factories, warehouses, farmlands, ports, etc.), and amenities for 
daily life (shopping centers, entertainment venues, sports facilities, etc.) 
within the main urban area of Nanjing city (detailed scope outlined in 
Section 2.1). These datasets aimed to reflect the urban morphology of 
Nanjing’s main urban area. 

It’s pertinent to note that in subsequent stages of this study (detailed 
outlined in Section 3.2.2), we quantified the urban green spaces area 
(GS), water space area (WS), building floor area ratio (BD), road density 
(RD), as well as the number of social welfare facilities (SOC), industrial 
production facilities (PRO), and living and residential facilities (LIF) 
across different grid areas, as per research requirements. The trans
formation involved converting vectorized graphical data into structured 
numerical data to facilitate further interpretable machine learning 
modelling analysis. The rationale behind selecting the quantitative 
characteristics of the aforementioned urban morphology indicators 
stems from two key considerations. Firstly, these indicators were pin
pointed in our study as being associated with urban thermal anomalies 
through a Grad-CAM-based computer vision analysis. Secondly, they are 
commonly recognized as core influencing factors within the literature of 
related fields. 

2.3. Machine learning algorithms 

2.3.1. ResNet-18 and transfer learning-based fine-grained image 
categorization 

In this study, a fine-grained image classifier model was built using 
the pretrained ResNet-18 model (Targ et al., 2023). And transfer 
learning was leveraged to simulate the occurrences of thermal anomalies 
in urban remote sensing image slices, including their daily/seasonal 
variations (Fig. 3). Fine-grained image classification, a computer vision 
task, aimed to categorize images into highly similar subcategories or 
subclasses. Unlike conventional image classification tasks, fine-grained 
classification required differentiating and identifying images 
belonging to the same category but showing subtle differences (Qi et al., 
2019). Fine-grained classification typically involved high similarity 
among classes, where images from different categories displayed highly 
similar visual features. Differences usually lay in minute details, 
covering a large number of categories—often reaching several hundred 
or even thousands—and encountering limited sample sizes. Due to the 
restricted number of samples within each subclass, datasets often suf
fered from imbalances, further complicating the task (Yang et al., 2018). 

The specific procedure for constructing the model involved several 
key steps. Firstly, a dataset of remote sensing image slices was compiled 
based on identifying thermal anomaly events in 2018, daily/seasonal 
variations, and associated urban regions. This dataset consisted of fine- 
grained categories with 9 labels. The Nanjing central area was parti
tioned to create a training set (48,361 samples) and a validation set 
(12,089 samples) in an 80 %:20 % ratio, while remote sensing image 
slices from the central area of Shanghai were assigned as the test set. 
Secondly, the images were standardized to a uniform size, and data 
augmentation techniques were applied to expand the dataset and 
strengthen the model’s resilience, aligning with ResNet-18′s input 
specifications. After these preparations, the pre-trained ResNet-18 
model was loaded. The fully connected layer was adjusted to fit the 
categories in the current dataset, initiating transfer learning. Three 
distinct approaches were explored during transfer learning: selectively 
fine-tuning the parameters of the last fully connected layer while 
keeping other layers fixed, fine-tuning all layers, and initializing all 
model weights randomly, training all layers from the start. These ap
proaches aimed to optimize the performance of the fine-grained image 
classifier model for local optima. After undergoing transfer learning and 
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achieving optimal model performance, an evaluation of its effectiveness 
was conducted on the fine-grained classification task, utilizing the 
validation set prepared during the initial stages of image data prepara
tion, with an 80 %:20 % split ratio (20 % allocated for validation). In 
addition to utilizing Nanjing data for training and validation purposes, 
this study augmented its dataset by incorporating thermal anomaly data 
from Shanghai’s downtown area. Given Shanghai’s climatic, economic, 
and geographic similarities to Nanjing, it provided an ideal supple
mentary locale for constructing a test set. This expansion enabled further 
simulation and evaluation of the optimized model’s performance, with 
metrics such as validation and testing accuracy being computed 
(detailed outlined in Section 3.1). The model operates by analyzing 
remote sensing image slices to classify the presence of urban heat islands 
or cold islands within a designated area. Furthermore, it forecasts the 
occurrence time (day or night) and season (summer or winter) of these 
phenomena. 

All model training processes utilized cloud GPU resources (imple
mented using the PyTorch framework in Python 3.11). The specific 
configuration of the cloud computer included a CPU-6-core E5-2680 v4, 
GPU-RTX 3060 with 12.6 GB VRAM, and 30.1 GB memory. The basic 
source code and some sample data used in this model training can be 
found in the author’s GitHub repository: https://github.com/ninndesu/ 
ResNet-18-PTF-AFC/. 

2.3.2. Gradient-weighted class activation mapping (Grad-CAM) 
After the construction of simulation models for thermal anomalies 

occurrences and their daily/seasonal variations, this study delved 
further into exploring the nonlinear relations between urban 
morphology and thermal anomalies using interpretable machine 
learning. The Grad-CAM (Gradient-weighted Class Activation Mapping) 
model (Selvaraju et al) was leveraged for this purpose. Urban 
morphology factors associated with urban thermal anomalies were 
identified with the assistance of Grad-CAM. Serving as an attention 
heatmap technique for visualizing neural network models (Fig. 4), Grad- 
CAM’s primary utility lay in the comprehension aid it provided for the 
model’s simulation process. Specifically, it revealed crucial areas of 
focus within the image, particularly beneficial in image classification 
tasks. The formula for obtaining neuron importance weights through 
Global Average Pooling in this algorithm was as follows: 

αc
k =

1
Z
∑

i
∑

j
∂yc

∂Ak
ij  

where Z represented the number of pixels in the feature map and Ak
ij 

represented the pixel value of the kth feature map in position (i, j). Af
terwards, weighting the features of the selected convolutional layer 
using the neuron importance weights (heatmap) obtained above: 

Lc
Grad− CAM = ReLU

(∑
kαc

kAk
)

In turn, this offered a means to explain model decisions. In this study, 
our focus primarily rested on quantitatively analyzing the numerical 
distribution of urban morphology-related indicators in different heat- 
value regions of the Attention Heatmap, elucidating the spatial corre
lation between urban morphology and thermal anomaly events (Sel
varaju et al). 

In the specific course of this study, we: ①Extracted feature maps 
from various convolutional layers through the forward propagation of 
deep learning models. ②Identified the target categories for model 
classification (e.g., urban cold islands, heat islands occurring during 
specific seasons or timeframes) and computed the gradients for each 
feature map via backpropagation and gradient computation in relation 
to these target categories. ③Conducted pooling operations on these 
gradients, typically employing Global Average Pooling, to obtain 
weights for each feature map, reflecting the significance of the target 
categories concerning these feature maps. ④Subsequently multiplied 
the feature maps by their corresponding gradient weights to obtain 
weighted feature maps. These weighted feature maps were considered 
the model’s “focus” areas for the target categories and were transformed 
into heatmaps using normalization and visualization techniques, high
lighting the model’s areas of interest within the image. 

Thus, interpreting convolutional neural network model simulations 
regarding the occurrence of urban thermal anomaly events in specific 
remote sensing image slices based on urban morphology constituted the 
essence of this approach towards interpretable machine learning. It’s 
imperative to note that during the practical experimentation, we con
ducted resampling of Grad-CAM heat values on the feature map heatmap 
using a 7*7 grid size. Subsequently, we analyzed the correlation be
tween urban morphology indicators and Grad-CAM heat values for each 
grid unit within the 7*7 grid. All these processes were executed using 

Fig. 3. Procedure of transfer learning-based ResNet-18 Fine-Grained image classifier construction.  

Fig. 4. Procedure of Grad-CAM-based identification of morphology factors related to thermal anomalies.  
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cloud-based GPUs, with detailed settings and relevant code examples 
elaborated in section 2.3.1. 

2.3.3. XGBoost and SHAP 
After completing the identification of urban morphology factors 

affecting thermal anomalies, this study further modeled the nonlinear 
relationship between the two with the help of the XGBoost (eXtreme 
Gradient Boosting), and visualized and interpreted the modeling 
nonlinear results with SHAP (SHapley Additive exPlanation). XGBoost 
was a machine learning algorithm that resided in the GBDT (Gradient 
Boosting Decision Trees) improvement. Different from GBDT, XGBoost 
added regularization terms to the loss function, and since some loss 
functions were difficult to compute derivatives, XGBoost utilized a 
second-order Taylor expansion of the loss function as a fit to the loss 
function. For a dataset containing n entries of m dimensions, the model 
could be represented as (Parsa, 2020). 

ŷi =
∑K

k=1
fk(xi), fk ∈ F(i = 1, 2,⋯n)

In the above equation, F = {f(x) = wq(x)}(q : Rm→{1,2,⋯T},w∊RT). In 
the above formula, F represented the set of CART decision tree struc
tures; q represented the tree structure of samples mapped to leaf nodes; T 
represented the number of leaf nodes, and w represented the real frac
tion of leaf nodes. When constructing the XGBoost model, it was 
necessary to find the optimal parameters according to the principle of 
minimizing the objective function in order to build the optimal model. 
After optimizing the training loss function and regularization penalty 
term, the final model objective function was obtained as follows: 

Obj =
∑T

j− 1

[

Gjwj +
1
2
(
Hj + λ

)
w2

j

]

+ γT  

In the above equation, Gj and Hj represented the sum of the first-order 
partial derivatives and second-order partial derivatives of the samples 
contained in leaf node j; λ represented the regularized penalty coeffi
cient; γ represented the decreasing value of the minimum training loss 
function; w2

j represented the square of the weight at leaf node j. 
After completing the training and optimization of the XGBoost 

model, this study further explained the nonlinear relationship between 
urban morphology and thermal anomalies visually by using SHAP, a 
game-theoretic method. This method constituted the core idea for 
calculating the marginal contribution of features to the model output 
and subsequently explaining the ’black-box model’ at both global and 
local levels. The contribution of each feature to the model output was 
assigned based on its marginal contribution, and the SHAP value was 
determined by the following equation: 

∅i =
∑

S⊆N{i}

|S|!(|N| − |S| − 1 )!
|N|!

[v(S ∪ {i} ) − v(S)]

In the above equation, ∅i represented the SHAP value of feature i; N 
represented the sample feature vectors to be interpreted; S represented 
the vector of feature combinations that do not contain feature i in the 
sample feature vector N; v(S ∪ {i} ) and v(S) represented the model 
output values with and without the effect of feature i, respectively. All 
above XGBoost model training and testing and SHAP processes were 
executed using cloud-based GPUs (elaborated in section 2.3.1). To be 
specific, tthis study formulated the XGBoost regression model utilizing 
Grad-CAM heat values from the thermal anomalies simulation model at 
resampled pixel locations as the dependent variable, while urban 
morphology factors served as the independent variables. 

3. Results 

3.1. Accuracy of thermal anomalies simulation 

3.1.1. General accuracy performance 
Three fine-grained image classifiers were built with the ResNet-18 

alongside transfer learning algorithms for urban thermal anomalies 
simulation. The primary objective was to enhance the accuracy of 
simulating urban thermal anomalies based on remote sensing images. 
Table 1 outlined the specific performance factors of the constructed 
models. 

Initially, in the first model, ResNet-18-PTT-FFC, only the parameters 
of the last fully connected layer were fine-tuned while other layers were 
kept frozen. Subsequently, the second model, ResNet-18-PTT-AFC, 
emerged as we fine-tuned all layers of the pre-trained ResNet-18 
model. Lastly, the third model, ResNet-18-PTF-AFC, was obtained by 
training all layers from scratch without utilizing pre-trained weight 
parameters. A thorough comparison of these transfer learning models in 
simulating urban thermal anomalies revealed the relatively superior 
performance of ResNet-18-PTF-AFC. Within a test set of 12,089 remote 
sensing image slices covering Nanjing’s downtown area, this model 
accurately identified urban thermal anomalies in 9,614 corresponding 
grid cells, achieving an overall accuracy of 79.52 %. Notably, ResNet-18- 
PTF-AFC exhibited a 1.61 % and 1.39 % improvement over ResNet-18- 
PTT-AFC in simulating urban heat and cold islands, respectively. In 
comparison to ResNet-18-PTT-FF, it demonstrated performance en
hancements of 3.26 % and 7.15 % in the same aspects. Afterwards, the 
ResNet-18-PTF-AFC model was applied to simulate urban thermal 
anomalies’ occurrences within Shanghai’s central area for 2018, as 
depicted in Fig. 5. The test set comprised 60,450 distinct remote sensing 
image slices, varying in dimensions, portraying instances of urban 
thermal anomalies (heat or cold islands). Fig. 5 utilized varying shades 
of red and blue to represent the frequency of recording or simulating 
these anomalies, with deeper shades denoting a higher occurrence 
within the specified region. 

The model’s performance closely aligned between the test set 
(Shanghai area) and the validation set (Nanjing area), which achieved 
an approximate 80.42 % accuracy in simulating urban thermal anom
alies in Shanghai (Table 2). Specifically, the ResNet-18-PTF-AFC model, 
obtained through transfer learning, exhibited exceptional performance 
in simulating regions prone to thermal anomaly events (where the 
annual average temperature consistently approached the regional 
mean), surpassing 88.42 % accuracy (as shown in the third column of 
Fig. 5). However, in simulating urban cold spots, its performance was 
relatively weaker, with an accuracy of 65.99 %, slightly lower than the 
76.47 % observed in the validation set (as seen in the second column of 
Fig. 5). Notably, deviations existed between the simulated pattern of 
urban cold spots by ResNet-18-PTF-AFC and the ground truth. 
Conversely, for simulating urban heat spots, the model demonstrated 
balanced performance, achieving 75.51 % accuracy. A comparison be
tween the ground truth heat spot pattern (first column of Fig. 5) and the 
model’s simulation results revealed a close overall resemblance, with 
minor discrepancies in details. 

3.1.2. Accuracy performance of the models with RS images in different 
resolutions 

After testing various transfer learning approaches and establishing a 
highly accurate model for simulating urban thermal anomalies, this 
study compared the effectiveness of different-sized remote sensing 
image slices in simulating urban heat islands and cold islands within 
urban central spaces. The results were presented in Table 2. 

The findings revealed that oversized dimensions might have 
encompassed excessive geographical features, hindering accurate sim
ulations of urban thermal anomalies. For instance, the simulation ac
curacies of image slices at 750 m and 1500 m dimensions, evaluated 
with ResNet-18-PTF-AFC on the test set, were only 73.32 % and 75.43 
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%, respectively. However, the three remaining sizes demonstrated 
simulation accuracies surpassing 80 %. Notably, the 500 m-sized remote 
sensing image slices exhibited the highest performance on the test set, 
achieving an overall simulation accuracy of 82.46 %. These 500 m-sized 
slices outperformed other sizes in simulating whether urban tempera
tures matched the annual average and in identifying urban cold islands. 
Their simulation accuracy for urban heat islands was slightly lower, by 
only 0.53 %, compared to the 300 m-sized remote sensing image slices. 
Consequently, the subsequent phases of this study continued utilizing 
the 500 m-sized remote sensing image slices to enhance research 
outcome accuracy. 

3.1.3. Accuracy performance of the models in different simulation scenarios 
The ResNet-18-PTF-AFC model not only simulated the occurrence of 

thermal anomalies such as urban heat islands and cold islands in remote 
sensing images but also forecasted their timing (day or night) and sea
sonality (summer or winter). Consequently, this research further 
compared the performance of the ResNet-18-PTF-AFC model in simu
lating thermal anomalies during different time periods and seasons. 

Comparative results were summarized below (Table 3). 
The research findings indicated that discrepancies were notably 

observed among seasons, with winter showing an average increase in 
accuracy of approximately 2.02 % in simulating urban thermal anomaly 
events over summer. However, no significant differences were evident 
between day and night simulations. Further comparisons revealed that 
the model demonstrated superior performance in forecasting urban heat 
islands during winter (an increase of around 3.05 %) but excelled in 
simulating urban cold island occurrences during summer (with an 
approximate 4.08 % increase). Regardless of whether the model simu
lated cold or heat island events, these performance variations persisted 
only between different seasons. 

3.2. Identification of morphology factors related to thermal anomalies 

After finalizing the construction and accuracy validating of the 
thermal anomalies simulation model, Grad-CAM was employed in this 
study to elucidate the key mechanisms within the ResNet-18-PTF-AFC 
model (at 500-meter resolution) during simulating thermal anomalies. 

Table 1 
General performance of models trained to simulate thermal anomalies.  

Model Type AVG UCI UHI OVERALL 

Grids Accuracy Grids Accuracy Grids Accuracy Grids Accuracy 

ResNet-18-PTT-FFC 6972  81.32 % 834  69.32 % 1723  74.53 % 9529  78.82 % 
ResNet-18-PTT-AFC 6924  80.76 % 903  75.08 % 1761  76.18 % 9588  79.31 % 
ResNet-18-PTF-AFC 6895  80.41 % 920  76.47 % 1799  77.79 % 9614  79.52 %  

Fig. 5. Performance of ResNet-18-PTF-AFC model in thermal anomalies simulation.  

Table 2 
Performance of models with RS images in different resolutions.  

Resolutions AVG UCI UHI OVERALL 

Correct All Correct All Correct All Correct All 

250 m 11,868 13,421 2042 3130 9450 12,465 23,360 29,016 
(88.43 %) (65.25 %) (75.81 %) (80.51 %) 

300 m 8165 9275 1505 2233 6635 8642 16,305 20,150 
(88.03 %) (67.42 %) (76.78 %) (80.92 %) 

500 m 3042 3322 550 798 2390 3134 5982 7254 
(91.56 %) (68.90 %) (76.25 %) (82.46 %) 

750 m 1274 1485 214 351 876 1388 2364 3224 
(85.76 %) (65.25 %) (75.81 %) (73.32 %) 

1500 m 308 370 106 181 194 255 608 806 
(83.15 %) (58.33 %) (75.97 %) (75.43 %)  
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The primary focus lay in pinpointing pivotal pixels within remote 
sensing imagery slices that exerted influence on the model’s simulation 
judgments was further summarized to clarify the factors related to 
thermal anomalies within different time spans and seasonal variations. 
Specifically, Grad-CAM was utilized to visualize the process by which 
predictions were made by the ResNet-18-PTF-AFC model. The key pixels 
that influenced the model’s formation of judgments were displayed in 
the form of heatmap, as shown in the activation map in rows 2–3 of 
Figs. 6 and 7. 

3.2.1. Morphology factors related to thermal anomalies within different 
scenarios 

Initially, the differences in the remote sensing imagery pixel regions 
of model response were compared under various simulations scenarios 
(different urban thermal anomalies event types). Fig. 6 illustrated hot
spot regions of interest identified by Grad-CAM for the ResNet-18-PTF- 
AFC model in scenarios depicting no thermal anomaly, urban cold is
land presence, and urban heat island presence. The resulting findings 
could be summarized as follows:  

(1) Regions characterized by extensive green coverage (Region 6–4) 
and low-density, dispersed building areas (Regions 6–1, 6–2, 6–3) 
were less susceptible to the urban heat island and cold island 
phenomena. Abundant green spaces, teeming with vegetation 
and soil, efficiently absorbed solar energy and promoted signifi
cant ventilation, enabling proficient heat exchange with the 
surrounding environment. Unlike densely populated urban areas, 
zones featuring low-density, scattered buildings generally pro
vided increased open spaces and greenery, encouraging improved 
air circulation and reducing the occurrence of thermal anomalies.  

(2) Urban cold island occurrences were more prevalent in specific 
regions characterized by shaded, densely populated, low-lying 
streets (Region 6–5), areas adjacent to wetlands and water 
bodies (Regions 6–6, 6–7), and shadowed zones amidst tall 
buildings (Region 6–8). These locations, such as narrow streets 
shielded by towering structures, experienced limited direct sun
light exposure, leading to decreased local temperatures. Wetlands 

and water bodies played a significant role in moderating ambient 
temperatures by absorbing and releasing heat, thereby inducing 
cooler microclimates in their vicinity, resulting in the formation 
of cold islands. Furthermore, diminished sunlight penetration 
caused by tall structures or other obstacles contributed to the 
lowered temperatures observed in these regions.  

(3) Urban heat island occurrences were more commonly observed in 
specific regions, such as industrial zones (Region 6–9), commer
cial districts (Region 6–10), high-density constructions (Region 
6–11), and densely populated areas (Region 6–12). These areas 
frequently housed multiple factories, machinery, and vehicular 
activities, resulting in the emission of substantial waste heat and 
exhaust gases, thereby raising temperatures within their confines. 
The concentrated structures of high-density constructions and 
densely populated areas impeded air circulation, impeding the 
efficient dissipation of heat. Additionally, these areas experi
enced significant vehicular emissions, further contributing to 
elevated temperatures. Compounded by the absence of water 
bodies and wetlands, these regions struggled to regulate ambient 
temperatures adequately, ultimately fostering the formation of 
urban heat islands. 

3.2.2. Morphology factors related to thermal anomalies within different 
time pierids 

Subsequently, the differences in the remote sensing image pixel re
gions of model response were compared within different time periods 
and seasons. Fig. 7 illustrated the identified hotspot regions of interest 
highlighted by Grad-CAM in summer/winter during daytime and 
nighttime. The resulting findings could be summarized as follows:  

(1) The urban heat island effect was notably pronounced in specific 
zones throughout different seasons. During summer, it was more 
prevalent in the central business districts (Region 7–3), high- 
density residential areas (Regions 7–4, 7–7), and industrial re
gions (Region 7–8). In contrast, winter exhibited a prominence of 
the heat island effect in urban commercial areas, especially dur
ing cold and clear weather conditions (Region 7–11). Seasonal 

Table 3 
Performance of models in different simulation scenarios.  

Scenarios AVG UCI UHI OVERALL 

Correct All Correct All Correct All Correct All 

Summer Daytime 4383 5135 130 186 1421 1933 5934 7254 
(85.35 %) (69.82 %) (73.53 %) (81.80 %) 

Summer Nighttime 4398 5135 193 279 1348 1840 5939 7254 
(85.65 %) (69.32 %) (73.28 %) (81.87 %) 

Winter Daytime 4557 5135 651 997 858 1122 6066 7254 
(88.74 %) (65.33 %) (76.50 %) (83.62 %) 

Winter Nighttime 4584 5135 632 962 884 1157 6100 7254 
(89.27 %) (65.66 %) (76.41 %) (84.09 %)  

Fig. 6. Sample focal pixel regions in Grad-CAM (within different scenarios).  
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variations in this effect were influenced by factors such as city 
building density, human activities, climate conditions, and solar 
radiation.  

(2) The emergence of a cold island phenomenon was associated with 
proximity to sizable water bodies within urban landscapes (Re
gions 7–1, 7–2, 7–5) and waterfront areas (Region 7–6) during 
summer. Conversely, during winter, this effect was typically 
observed in high-rise urban areas (Region 7–9), open spaces on 
the urban periphery (Region 7–13), or areas characterized by 
extensive vegetation cover (Region 7–14), particularly on calm 
and clear nights. Seasonal variations in the cold island effect were 
closely tied to factors such as climate, topography, and vegetation 
cover.  

(3) The daytime urban heat island effect was typically observed in 
central business districts (Regions 7–3, 7–11) and high-density 
office building areas (Region 7–4). In contrast, the nighttime 
urban heat island effect tended to dominate in the city’s indus
trial zones (Regions 7–8, 7–16). This phenomenon was mainly 
attributed to the varying absorption and release of energy within 
the city throughout the day and night. 

(4) The daytime urban cold island effect tended to be more pro
nounced in proximity to extensive lakes, rivers (Regions 7–1, 
7–10), and developed waterfront areas (Regions 7–2, 7–9). 
Conversely, the nighttime urban cold island effect was more 

evident in artificial structural environments, such as outskirts 
roadways (Region 7–13) or areas characterized by substantial 
vegetation cover (Region 7–14). This discrepancy arose from 
variations in the processes of heat absorption and release across 
different locations. 

In general, the ResNet-18-PTF-AFC model, alongside Grad-CAM, 
delineated associations between thermal anomalies and diverse urban 
morphology factors across various event types and temporal scenarios. 
Strong correlations with thermal anomalies emerged in specific urban 
areas, namely: ①Urban blue (water bodies) and green spaces (urban 
forests, grasslands, and parks); ②Urban transportation infrastructure 
(railways, stations, and roads); ③High-density urban commercial and 
residential zones; ④Urban industrial areas, social facilities, production 
centers, and amenities. Furthermore, the identification of dominant 
factors was contingent upon the timing of thermal anomaly occurrences. 

3.2.3. Validation of the results of key morphology factor identification 
This study verified the robustness of identifying key urban 

morphology factors affecting thermal anomalies via Grad-CAM by 
resampling the weighted feature maps onto a 7*7 grid (details in Section 
2.3.2). And the Pearson correlation analysis was employed to evaluate 
the relationship between Grad-CAM heat values of the weighted feature 
maps at each grid and corresponding urban built environment 

Fig. 7. Sample focal pixel regions in Grad-CAM (within different time).  
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characteristics (see Section 2.2.3). Fig. 8′s Pearson correlation outcomes 
consistently aligned with Grad-CAM model response regions on urban 
remote sensing imagery slices in Sections 3.2.1 and 3.2.2. All urban built 
environment elements showed varying degrees of correlation with 
thermal anomalies under at least one scenario. Among morphology 
factors, GS and WS exhibited the strongest associations with thermal 
anomalies, displaying the highest Pearson correlation coefficients (0.64 
and 0.615, respectively) with eigenvalues of the summer urban heat 
island. LIF followed, showing the highest correlation coefficient (0.732) 
with eigenvalues of the summer night urban heat island under the full 
scenario, slightly lower on average than GS and WS. PRO, reflecting 
industrial and socially productive land characteristics, exhibited corre
lation coefficients between 0.392 and 0.449, especially evident in 
summer. SOC, BD, and RD showed slightly lower Pearson correlations 
with thermal anomalies compared to the aforementioned factors, 
maintaining an average correlation level of over 0.2, particularly 
noticeable in summer. 

When comparing scenarios, Pearson correlation analysis indicated a 
notably stronger association between urban morphology and thermal 
anomalies in summer than in winter, with an average coefficient in
crease of about 0.183. Moreover, the correlation between morphology 
factors and heat island regions’ Grad-CAM heatmap eigenvalues 
demonstrated a more pronounced response mechanism, with an average 
coefficient increase of approximately 0.139. 

3.3. Nonlinear relations between morphology and thermal anomalies with 
threshold effect 

After identifying and validating urban morphology factors associated 
with thermal anomalies using Grad-CAM, this study formulated the 
XGBoost regression model. It utilized Grad-CAM heat values from the 
thermal anomalies simulation model at resampled pixel locations as the 
dependent variable, while urban morphology factors served as the in
dependent variables. The XGBoost models simulated urban thermal 
anomalies across 8 scenarios, with an average mean squared error (MSE) 
ranging from 0.001 to 0.003. Additionally, SHAP was employed to 
visualize and analyze the nonlinear regression process, primarily 
focusing on nonlinear patterns, activation levels, and threshold effects. 

3.3.1. Importance order of urban morphology factors affecting thermal 
anomalies 

The XGBoost model was further adapted to incorporate the SHAP 
interpreter, and the SHAP values related to urban morphology feature 
variables were sorted and visualized. This ranking illustrated the 
contribution of urban morphology factors to thermal anomaly simula
tion results. 

Fig. 9 demonstrated the comprehensive relationship between vari
ables characterizing each urban morphology factor. Each data point on 
the graph represented a sample object, with distinct colors denoting 
original high or low values of the respective feature variable. The hor
izontal axis represented the SHAP value, indicating the magnitude of 
influence exerted by the feature variable on the XGBoost model out
comes. A positive SHAP value indicated a positive contribution of the 
urban morphological feature variable to thermal anomalies, while a 
negative value signified an inhibitory effect. As shown in Fig. 9, the 
combined impact of green spaces area (GS), water space area (WS), 
spatial arrangements of essential living and residential facilities (LIF) 
such as office buildings and commercial zones, building floor area ratio 
(BD), and the distribution of industrial production facilities (PRO) 
emerged as crucial factors that contributed to thermal anomalies within 
the city. Their average SHAP value contributions were notably higher 
than those of other urban morphology indicators. 

Significant variability was observed in the SHAP values corre
sponding to each urban morphology characterization variable across 
different times. During winter, GS showed significantly stronger asso
ciations with urban thermal anomalies compared to summer, with mean 
SHAP influence orders 4.5 places higher. Conversely, BD exhibited 
heightened associations with thermal anomalies during summer, with 
mean influence orders 2 places higher. Differences in SHAP values be
tween daytime and nighttime indicated significant variations in the 
mechanisms linking urban morphology to urban thermal anomalies at 
different time periods. RD displayed notably stronger correlations with 
urban thermal anomalies during the daytime, with mean influence or
ders 1.5 places higher than during the nighttime, while BD showed 
heightened associations with thermal anomalies during the nighttime, 
with mean influence orders 1.5 places higher. 

When evaluating various urban thermal anomaly events in relation 
to urban morphology, the ranking of SHAP values revealed varied re
sults, particularly in BD, WS, and SOC indicators. Specifically, the BD 
factor significantly affected the mitigation of the urban cold island effect 
but showed relatively lower significance in contributing to the urban 
heat island, with an average SHAP value importance order difference of 
3.5 places of magnitude. In contrast, WS and SOC had a more substantial 
impact on the urban heat island effect compared to the cold island. 

Furthermore, the analysis of SHAP value contributions highlighted 
instances where urban morphology factors might have outliers in pro
moting or suppressing effects on the same type of thermal anomalies in 
specific different scenarios. For example, BD had a localized promoting 
effect on the urban cold island phenomenon (dark-colored scatters of BD 
in Fig. 9-e were distributed within the coordinate interval with positive 
SHAP values). Similarly, LIF also promoted the urban cold island phe
nomenon in extreme summer scenarios (light-colored scatters of LIF in 
Fig. 9-a were distributed within the coordinate interval with positive 
SHAP values). These findings were contrary to other scenarios 
significantly. 

3.3.2. Nonlinear mechanism of urban morphology’s impact on thermal 
anomalies 

Finally, the study plotted partial dependency diagrams (PDPs) of the 
XGBoost model using SHAP to visualize the nonlinear relationships 
between the most vital (top 2 in SHAP values) urban morphology factors 
and thermal anomalies in various seasons, time periods, and scenarios of 
thermal anomaly types. The results were presented in Fig. 10. Specif
ically, our study directed attention towards the patterns, activations, 
and thresholds represented by the scattered points and folded lines 

Fig. 8. Pearson correlations between urban morphology factors and ther
mal anomalies. 
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Fig. 9. Importance of SHAP values regarding urban morphology factors.  
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within these plots. These elements laid the foundation for interpreting 
the nonlinear relationship observed between urban morphology in
dicators and thermal anomalies.  

a. Green space area. 

The results of fitting the nonlinear relationship for indicator GS 
(Green Space Area) demonstrated that an urban space of approximately 
520 m2 exhibited a greater occurrence of an urban cold island with an 
increase in the green space area, varying from 0 to 90 m2. A significant 
threshold was observed at the 90 m2 level, beyond which the occurrence 

of urban cold islands remained unaffected by changes in the green space 
area. It was noteworthy that for the urban cold island phenomenon at 
night, an activation level was evident at 75 m2. Upon reaching 75 m2, 
the increase in its area substantially augmented the occurrence of the 
cold island until it surpassed 90 m2. The relationship between urban 
heat island and GS demonstrated a higher level of complexity, mani
festing two significant thresholds in the PDP plot. The initial threshold 
appeared at 9 m2, where an augmentation in green space area signifi
cantly diminished the occurrence of heat islands as the regional green 
space area varied from 0 to 9 m2. With the green space area increasing 
from 9 to 88 m2, the probability of a heat island’s occurrence still 

Fig. 10. Partial dependence analysis of urban morphology factors.  
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diminished, albeit at a notably slower pace. Ultimately, upon reaching 
the second threshold of 88 m2, alterations in green space area ceased to 
affect the emergence of heat islands. The observed nonlinear relation
ships between GS and thermal anomalies, as delineated above, were 
notably more pronounced during winter.  

b. Number of living and residential facilities 

The nonlinear relationship between the number of living and resi
dential facilities (LIF), identified as a core urban morphology factor 
impacting thermal anomalies, demonstrated a significant association 
between changes in its eigenvalues and the urban heat island (UHI) 
phenomenon. Two distinct thresholds were evident in the overall fitting 
results of the nonlinear relationship between LIF and the probability of 
UHI occurrence. The first threshold manifested within the range of 
68–70, where the probability of UHI occurrence increased with rising 
LIF values from 0 to approximately 68. Subsequently, the probability 
stabilized upon reaching the first threshold. The second threshold, 
observed within the range of 130–147, showed insignificant fluctuations 
in UHI probability as the LIF indicator varied between 68 and 
approached 147. Beyond the second threshold at 147, a notable increase 
in UHI occurrence was witnessed with rising LIF values, surpassing the 
rate observed within the 0 to 68 range. Moreover, the fitting results of 
the nonlinear relationship between LIF factors and UHI exhibited 
localized differences between daytime and nighttime scenarios during 
summer. In the daytime scenario, UHI probability exhibited minimal 
variation as the LIF factor ascended towards the first threshold at 68, 
stabilized briefly until 72, and experienced a marginal decrease of 
approximately 0.5 % between 72 and 73 before stabilizing again until 
the second threshold at 137. Conversely, in the nighttime scenario, the 
LIF indicator underwent slight fluctuations until reaching the second 
threshold at 137, remaining relatively stable around 127 thereafter, 
corresponding to a rise in UHI probability.  

c. Building floor area ratio. 

The strong consistency in fitting results across scenarios revealed a 
nonlinear correlation between building floor area ratio (BD) and urban 
thermal anomalies. Regarding the urban heat island phenomenon, a 
rapid increase in occurrence was observed with rising BD indicator 
values between 0 and 1.1. However, beyond a BD of 1.1, changes in the 
factor value no longer impacted the occurrence of the urban heat island. 
Conversely, concerning the urban cold island, a swift decrease in 
occurrence occurred as the BD factor rose from 0 to 1.3. Yet, beyond a 
BD of 1.3, alterations in its factor value ceased to affect the occurrence of 
urban heat islands. Moreover, this study identified an unexpected 
observation regarding the BD factor’s influence on the probability of 
urban cold island occurrence during summer and winter scenarios. In 
the summer, contrary to expectations, the probability of urban cold is
land occurrence escalated with increasing BD factor values until 
reaching the first threshold of 1.3. This intriguing finding was exten
sively discussed in the study’s subsequent Discussions section 4.1 and 
4.2.  

d. Road density. 

A significant nonlinear relationship was identified between the 
emergence of urban heat islands during daytime in summer and RD 
(Road Density), revealing a notable threshold. As road density increased 
from 0 to 1.2 km per square kilometer, a decrease in the occurrence of 
urban heat islands was observed. This decline demonstrated an inverse 
correlation between road density and the occurrence of urban heat 
islands. Notably, a significant threshold was evident at the 1.2-kilometer 
mark. Subsequent to surpassing this threshold, changes in the area of 
green space no longer affected the occurrence of urban heat islands.  

e. Number of industrial production facilities 

A significant nonlinear relationship existed between the number of 
industrial production facilities (PRO) and the urban heat island during 
winter daytime. Two significant thresholds, along with several activa
tion levels, were observed. The initial threshold, at 16, exhibited a 
marked decrease in the occurrence of the heat island as the PRO ranged 
from 0 to 16. As the number of industrial production facilities increased 
from 16 to 44, the probability of a heat island occurrence rose with an 
increasing PRO, albeit at a considerably slower rate. Upon surpassing 
the second threshold of 44, a rise in the PRO factor once again show
cased a mitigating effect on the probability of an urban heat island 
emergence. Importantly, at least three activation levels were identified 
at 33, 41, and 52. When the number of industrial production facilities 
reached 33 and 41, the impact of PRO increase on the heat island 
occurrence accelerated significantly until the PRO value exceeded the 
threshold level of 44. Conversely, upon reaching the activation level of 
52, the impact of PRO increase on the heat island occurrence diminished 
more rapidly.  

f. Water space area. 

The intricate nonlinear relationship between watershed area (WS) 
and urban thermal anomalies yielded contrasting outcomes across 
different time periods. In the case of thermal anomalies like urban heat 
islands, a consistent trend emerged across a majority of scenarios: a 
gradual decrease in event occurrence was observed with increasing 
watershed area, revealing two notable threshold effects. The initial 
threshold, at 6 m2, marked a pronounced decrease in the occurrence of 
heat islands as WS ranged from 0 to 6 m2. Subsequently, as the water 
space area extended from 6 to 69 m2, the likelihood of a heat island 
occurrence diminished with increasing WS, albeit at a slower pace. Once 
surpassing the second threshold of 69 m2, any rise in the PRO factor no 
longer significantly influenced the probability of urban heat island 
emergence. Regarding urban cold islands, a consistent trend also 
emerged across most scenarios: a gradual increase in event occurrence 
was observed with increasing watershed area, marked by one significant 
threshold and an activation level. The nonlinear relationship analysis for 
the WS factor revealed a higher occurrence of urban cold islands with an 
expansion in water space area, ranging from 0 to 106 m2. A notable 
threshold was identified at the 106 m2 level, beyond which the occur
rence of urban cold islands remained unaffected by changes in green 
space area. Importantly, an activation level was discernible at 28 m2. 
Upon reaching this threshold, the incremental increase in water area 
minimally impacted the occurrence of the cold island until it surpassed 
106 m2. 

Moreover, an inverse nonlinear relationship existed between WS and 
urban thermal anomalies, contrasting with patterns observed in other 
seasons in winter. For instance, during winter nights, the urban heat 
island occurrence escalated, contrary to decreasing trends, in proportion 
to the regional watershed area until a critical threshold (at 135 m2) was 
reached, beyond which it ceased to impact thermal anomalies. Similarly, 
daytime occurrences of urban cold islands decreased, in contrast to ex
pected increases, with the expansion of the regional watershed area until 
a threshold (at 78 m2) was attained, marking a point where its influence 
on thermal anomalies diminished. Notably, urban cold island occur
rences displayed minor fluctuations within the 78–82 m2 range of 
watershed area. 

It was further emphasized that despite having been recognized as an 
influential factor on urban thermal anomalies in previous Grad-CAM- 
based identifications of urban morphology elements and Pearson cor
relation analysis, SOC (number of social welfare facilities) did not 
exhibit a significant nonlinear relationship with specific types of thermal 
anomalies during the targeted seasons and time frames. 
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4. Discussions 

In this study, crucial insights into seasonal and daily variations in the 
correlations between urban morphology and thermal anomalies were 
uncovered. Two significant breakthroughs were made. Firstly, a profi
cient ResNet-18-PTF-AFC model was developed using CNNs and transfer 
learning techniques to simulate urban thermal anomalies from remote 
sensing imagery data. Secondly, it unveiled the intricate nonlinear 
connection between thermal anomalies and urban morphology. Specif
ically, spatial correlations of urban elements with thermal anomalies 
were investigated using the interpretability of Grad-CAM and SHAP al
gorithms. This method facilitated the visual delineation of pixel regions 
associated with urban thermal anomaly simulation, aiding the identifi
cation of key urban features emphasized during classification and 
revealing the threshold effect within the nonlinear trend. Within these 
pivotal findings, two noteworthy points warrant attention. 

4.1. Linkage between dense high-rise residential buildings and summer 
urban cold island 

In Section 3.3, insights gleaned from Grad-CAM interpretability 
analysis revealed that, in the context of simulating the likelihood of 
urban cold islands occurring in corresponding urban areas during winter 
using remote sensing images, the ResNet-18-PTF-AFC model primarily 
focused its attention on image pixel regions within high-rise residential 
areas. This pixel-based observation indirectly implied a potential cor
relation between the presence of densely packed high-rise residential 
buildings and the occurrence of urban cold islands. This finding stood in 
contrast to conventional research, which commonly posited that high- 
density cities contributed to the urban heat island effect through 
increased building structures absorbing solar radiation and emitting 
heat (Chun and Guldmann, 2014; Li et al., 2020; Terjung and Louie, 
1973). 

To verify this unexpected correlation, further investigation was 
conducted in the designated area (Region 7–9) and the distinctive fea
tures were unveiled in these densely constructed high-rise residential 
zones: ①A low overall building density in the surrounding regions; 
②significant building volumes and heights; ③remarkably high levels of 
greenery within residential areas. Consequently, based on these find
ings, three potential mechanisms linking dense high-rise residential 
buildings to urban cold islands were inferred: ①High-rise residences 
predominantly positioned at critical junctures of urban ventilation cor
ridors in the case study area likely experienced stronger wind effects due 
to surrounding open spaces, resulting in lower temperatures (Yang et al., 
2011); ②These buildings surpassed the regional average in both area 
and height, facilitating increased heat dissipation owing to their larger 
surface area. Moreover, investigations revealed the predominant use of 
white or light-colored materials like glass, concrete, and tiles, which 
were conducive to heat dissipation (Santamouris et al., 2011); ③The 
target area pertained to a newly developed section of the city primarily 
inhabited by affluent individuals. Consequently, residential neighbor
hoods within this area exhibited high levels of green landscapes and a 
significant presence of vegetation and water bodies, crucial for area 
cooling and the formation of urban cold islands (Chen et al., 2014). 

4.2. Linkage between urban living facilities cause urban cold island in 
summer 

During daytime and nighttime in summer, the quantity of urban 
living facilities (such as shopping centers, entertainment venues, sports 
arenas, etc.) displayed a diafactorally opposite nonlinear pattern in 
weighted Grad-CAM feature map heat values associated with urban cold 
islands. This observation stood in stark contrast to prior research, which 
indicated that an increased presence of shopping centers, entertainment 
venues, and sports arenas within a region amplified the probability of 
urban heat island effects (Nuruzzaman, 2015; Ojima, 1990). The 

surrounding temperatures were typically elevated by the use of air 
conditioning, lighting, and other heat-releasing devices in these facil
ities. Furthermore, increased population density and heat accumulation 
were facilitated by their ability to attract larger crowds to the city center 
(Ramírez-Aguilar and Lucas Souza, 2019; Lemonsu et al., 2015). 

To validate this, on-site research was conducted during daytime 
hours (06:00 to 18:00) at the primary shopping centers and entertain
ment venues in the study area to measure local temperatures. Instances 
were observed where local temperatures were found to be lower than 
the regional average. The analysis, combined with objective observa
tions, suggested that certain shopping centers, entertainment venues, or 
sports arenas in the study area incorporated highly efficient heat insu
lation designs. For example, technologies such as double-layer, highly 
reflective materials, and heat bridge isolation were employed in the 
external walls, roofs, and floor structures of establishments like the Deji 
Shopping Mall in Nanjing, resulting in the maintenance of lower internal 
temperatures compared to the surrounding areas. Furthermore, many 
facilities in the region operated with superior cooling systems during 
high summer temperatures, maintaining average interior temperatures 
considerably lower than the surrounding areas by approximately 
14–16 ◦C during the day, primarily due to air conditioning. During in
terviews with the responsible personnel, acknowledgment was given to 
the intentional cooling of malls during summers to attract customers and 
provide a comfortable environment. However, it was noted that exces
sive use of air conditioning contributed to energy wastage and envi
ronmental burden (Tremeac, 2012). 

4.3. Applicability and limitations 

The main findings concerning urban morphology and the thermal 
environment stem primarily from empirical research conducted in cities 
characterized by a northern subtropical monsoon climate (specifically 
Nanjing and Shanghai). Notably, the influence of urban morphology on 
the urban thermal environment exhibited varied mechanisms across 
different latitudes and climatic regions (Kotharkar and Bagade, 2018). 
From a latitudinal standpoint, urban thermal anomalies in low latitude 
regions were predominantly influenced by tropical climates (Yang et al., 
2020). These regions typically experienced higher temperatures, leading 
to increased absorption of solar radiation energy by building and road 
surfaces during urbanization processes. In mid-latitude regions, urban 
thermal anomalies may have been more significantly affected by sea
sonal climate variations (Liu et al., 2020). Conversely, at higher lati
tudes, urban thermal anomalies may have been more heavily influenced 
by the materials comprising buildings and roads within the city. In cold 
climates, these surfaces often accumulated substantial heat, resulting in 
warmer city interiors relative to the surrounding areas, particularly 
during winter months. Consideration of different climatic zones 
revealed that the impact of urban thermal anomalies was subject to 
additional factors such as climate type, precipitation, and wind speed. In 
arid climates, urban areas lacking water bodies or vegetation may have 
exhibited more pronounced urban heat island effects due to reduced 
evaporative cooling (Lu and Lange, 2024). Conversely, in humid cli
mates, high levels of humidity could have impeded heat dissipation, 
prolonging the duration of urban thermal anomalies. In oceanic climate 
zones, the moderating influence of the ocean could have mitigated 
urban thermal anomalies, particularly during summer months, by 
slowing the formation of urban heat islands (Yin et al., 2024). Thus, the 
primary application areas of the research findings encompassed urban 
areas characterized by tropical and temperate monsoon climates, as well 
as Mediterranean climate regions resembling the study’s experimental 
area. This is one of the main limitations of this study. 

On the other hand, the original intent of the study was to system
atically interpret the spatial correlations between urban morphology 
and temporal variations in thermal anomaly events using rich urban 
morphology information contained within remote sensing images and 
interpretable machine learning techniques. However, due to limitations 
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in the coverage of data provided by the Yale Center for Earth Observa
tion (Version 5) dataset, the study was confined to discussing the rela
tionship between the characteristic changes in urban thermal anomaly 
events during two seasons (summer and winter) and two time periods 
(day and night) with urban morphology. Consequently, the study fell 
short in thoroughly deciphering the mechanisms behind the formation 
of multi-time period, annual urban thermal anomaly events. This limi
tation represented a primary drawback of the study and underscored a 
significant area for future improvements. 

5. Conclusions 

With the assistance of CNNs and interpretable machine learning al
gorithms, this study proficiently identifies the morphological indicators 
linked to urban thermal anomalies. Furthermore, it delineates the 
nonlinear trends, thresholds, and activation levels of these indicators, 
elucidating their influence on the location, timing, and seasonal occur
rence of thermal anomalies. The key findings are summarized as follows:  

1. A ResNet-18-PTF-AFC model for urban thermal anomalies simulation 
using remote sensing imagery slices was constructed. The final 
optimized model achieved notable results with an accuracy of 79.52 
% on the training set and 80.42 % on the test set. Incorporating 500 
m-scale remote sensing images enhanced the model’s predictive ca
pabilities, highlighting the efficacy of the proposed methodology.  

2. Grad-CAM’s identification of pivotal hotspot pixels and SHAP’s 
interpretability assessment for ResNet-18-PTF-AFC model high
lighted that crucial urban morphology factors contributing to ther
mal anomalies include the area of green spaces, water spaces, the 
number of residential facilities, building floor area ratio, and the 
count of industrial production facilities.  

3. Clear nonlinear relationships were observed between dominant 
urban morphology factors and the occurrence of thermal anomalies, 
revealing multiple thresholds and activation levels. Green Space 
Area (GS) affects Urban Cold Islands (UCI) and Urban Heat Islands 
(UHI) differently, with UCI increasing until 90 m2 and UHI 
decreasing until 9 m2. The number of living and residential facilities 
(LIF) impacts UHI dynamics around 68–70 and peaks at 130–147. 
Building floor area ratio (BD) affects UHI until 1.1 and UCI until 1.3. 
Road density (RD) shows a UCI threshold at 1.2. Industrial produc
tion facilities (PRO) display UHI thresholds at 16 and 44. Water 
space area (WS) decreases UHI until 69 m2 and increases UCI until 
106 m2. The number of social welfare facilities (SOC) lacks 

significant nonlinear relationships with specific thermal anomalies. 
These findings offer insights into complex urban dynamics and 
thermal variations. 

The above exploration of the nonlinear correlation between urban 
morphology and thermal anomalies serves to enrich theoretical insights 
within the fields of urban planning and environmental thermal dy
namics. Moreover, it provides a quantitative framework essential for 
devising sustainable urban planning strategies geared towards allevi
ating thermal anomalies. Through the delineation of distinct types, 
thresholds, and activation levels of crucial urban morphology indicators 
correlated with thermal anomalies, this research aids in establishing 
precise benchmarks for urban morphology, thereby facilitating targeted 
mitigation measures. 
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